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Chapter 1

Introduction

Quantum gauge field theories describe fundamental interactions. The description of

the interactions among photons and various charged particles is given by an Abelian

gauge theory i.e. quantum electrodynamics (QED) and it is very successful. This

success encourages us to describe the electromagnetic, weak and strong interactions

in nature by gauge theories. Unlike QED, weak and strong interactions are described

by Yang-Mills theory [1]. Unification of electromagnetic and weak interactions [2–4]

into the electroweak theory is quite successful in the Standard model of particle

physics.

In this thesis, we will consider non-Abelian generalization of a topologically mas-

sive model [5–7] in 3+1 dimension where the gauge fields become massive keeping the

global symmetry unbroken. This model contains a two form field Bµν , known as Kalb

Ramond (KR) field [8] which couples with Aµ through a termmB∧F = m
4
εµνρλBµνFρλ

term, where Fρλ is the field strength of one form gauge field Aρ. This coupling term

is four dimensional generalization of Chern Simons term. Massless Bµν field has only

one degree of freedom whereas massless Aµ field has two degrees of freedom [8]. But

if Bµν is taken to be massive then it has three degrees of freedom like the massive Aµ

1
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field. The fields become massive in this model without a residual degrees of freedom

like Higgs field in Higgs mechanism [9–11]. Our convention for the signature of metric

is (+,−,−,−).

We will consider the application of the model in quantum chromodynamics (QCD)

because it is believed that QCD is described by unbroken SU(3) Yang-Mills (YM)

theory [12–15]. The non-Abelian gauge fields in YM theory are the source of them-

selves i.e. they carry the color charges. As a consequence there are various non-linear

interactions among the massless gauge bosons in a YM theory. Instead of taking

massless we consider massive gauge fields because mass of the gauge boson plays im-

portant roles in the perturbative analysis in QCD. We will consider elastic scatterings

among massive non-Abelian gauge bosons and the behaviour of gauge coupling con-

stant with energy scale in the topologically massive model in this thesis which depend

on perturbation technique. But there is a limitation in the use of this technique in

non-Abelian gauge theory. This technique can be used in YM theory at higher energy

because the strength of the strong interaction decreases with increase of energy scale.

As a consequence, the interaction becomes weak at high energy and it can be treated

in perturbation theory. This behaviour of the coupling strength is known as asymp-

totic freedom [16–23]. The variation of strong coupling constant αs with the energy

scale Q in massless Yang-Mills theory with matter fields from one loop correction is

given by

∂g

∂ lnµ
= β(g) = − g3

16π2

(
11

3
Nc −

2

3
Nf −

1

6
Ns

)
, (1.1)

where g is the gauge coupling constant in Yang-Mills theory. Here Nc is the num-

ber of colors, Nf and Ns are the number of flavours of fermions and scalar bosons

respectively. From the above expression, we get

αs(Q) =
4π

b ln
(
Q2

Λ2

) , (1.2)
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where

αs =
g2

4π
, b =

11

3
Nc −

2

3
Nf −

1

6
Ns . (1.3)

Λ is the energy scale which is defined as

1

αs(Λ)
= 0, (1.4)

which tells that at the energy scale Λ, the coupling strength becomes very large and

consequently the quarks are strongly bound or confined in the hadrons. Present value

of Λ is few hundred MeV [24] for six flavours of quarks and no scalar. The behaviour

of αs at high energy can be found experimentally where a deep inelastic scattering

phenomena takes place between electron and proton. At high energy, the electrons

can interact with quarks and gluons in the hadron and produce many particles in the

final state. This process is characterised by two kinematic variables: i) the momentum

transfer q and ii) the energy E of the virtual photon. If the mass of the nucleon is

M , then a dimensionless parameter is constructed in lab frame, which is known as

Bjorken x:

x = − q2

2ME
. (1.5)

Here M is the mass of the proton. The proton is taken to be at rest in the analysis.

Since q2 is a negative quantity in a scattering process, x is positive and we can show

from the kinematics that 0 < x < 1. The scattering cross-section of the process

depends on two functions Fi(q2, x), where i = 1, 2, which signify the structure of the

nucleon. As −q2 increases, Fi’s rapidly lose the dependence on q2 and becomes the

functions of x only:

lim
−q2→∞

Fi(q
2, x) = Fi(x). (1.6)
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So the structure functions become independent of any mass scale. This is known as

Bjorken scaling and was first obtained by operator product expansion [25–28]. Exper-

imentally Bjorken scaling is obtained for the value of Q2 ≥ 2(GeV)2. This behaviour

of the structure functions can be explained by the Parton model [29] where pertur-

bation theory is used to describe the interactions among virtual photon and quarks.

The process is designated as ep → eX, where X denotes the particles produced due

to interactions among electrons and quarks via photon γ. The calculated values of

the structure functions from the parton model agree with their experimental values

within about 10 − 15%. This explanation is only possible when we take the cou-

plings among quarks to be very weak in deep Euclidean region (−q2 →∞), implying

asymptotic freedom. Asymptotic freedom also occurs for weak interaction but the

weak-coupling strength reduces much more slowly with energy as compared to the

coupling strength of strong interaction. But unlike the sources of electromagnetic and

weak interaction, the color charges are not found isolated in the experiment, they are

confined in hadrons. This confinement cannot be explained in perturbative analysis

at high energy. At the energy Q ∼ Λ, α becomes very large and quarks and gluons

interact among themselves strongly which leads them to form bound states. In this

energy regime, perturbation technique does not work. In the perturbative analysis,

we should work in the energy regime Q� Λ.

We have seen from the presence of Nf and Ns in the eqn.(1.2) how interactions

among the matter and gauge fields affect the behaviour of αs with energy scale. Since

we will consider a topologically massive model which contains linear and non-linear

interactions among Aµ and Bµν fields, it will be interesting to see how the asymptotic

freedom will be affected due to the presence of the interactions of the YM and tensor

fields. We will see asymptotic freedom in this topologically massive model in the

chapter 3 of this thesis.
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Confinement of colored particles is due to the behaviour of the strong coupling

strength at low energy. Its dynamical mechanism is not understood yet. However,

the mass of the gauge boson plays an important role in a possible explanation of

confinement of gluons in QCD. That is why we find that the topologically massive

model becomes very important for the analysis of QCD. Massive gauge bosons are

also important in the analysis of scattering phenomena among gauge bosons in an

unbroken non-Abelian gauge theory, which we will consider. I will give now a brief

review of some models which were built to explain confinement in non-perturbative

regime. Next we will discuss the importance of the mass of gauge boson in scattering

theory of non-Abelian gauge bosons.

There are various models built for explaining confinement. Taking the meson to

be a bound state of quarks and anti-quarks, Y. Nambu and G. Jona-Lasinio developed

their model in 1961 [30] in analogy with the paired state formed by the Cooper pair in

superconductivity. In the theory of the superconductivity developed by J. Bardeen,

L. N. Cooper, J. R. Schrieffer [31,32] and N. N. Bogoliubov [33], the ground state of

the system does not remain invariant under the global symmetry, i.e. spontaneous

symmetry breaking occurs. But the color symmetry is believed to be unbroken in

QCD. This implies that all the gluons have equal mass.

One of the very important facts regarding the structure of hadrons was found by

T. Regge. The plot of square of mass M2 vs spin J of hadrons became a possible

insight of the structure of hadrons. It is a set of straight lines and each line is called

a Regge trajectory [34, 35]. This plot is shown in Fig. 1.1. The straight lines are

obtained from the hadronic interaction. An important characteristic of the lines is

that they are parallel to one another. This implies that the rate of increase of the

square of mass with spin is the same for all resonances. The equation of the lines can
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Figure 1.1 Regge trajectories : M2 vs JPC plot taken from [36] with the

authors’ permission.

be written as

J = α0 + α′M2, (1.7)

with

α′ ≈ 1 GeV2. (1.8)

Here α0 is the Regge intercept and α′ is the Regge slope. A possible explanation of

this plot is found if the quarks are taken to be attached by strings. We imagine two

massless quarks, connected by a string of length d, rotating with a speed of light.

Each point, at a distance r from the centre, has the local velocity v
c

= 2r
d
. The total

energy or mass of the string is

M = 2

∫ d
2

0

Kdr

(1− v2)1/2
=
πKd

2
, (1.9)
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where K is the string tension, and the spin is

J = 2

∫ d
2

0

Krvdr

(1− v2)1/2
=
πKd2

8
. (1.10)

Hence we get from eqn.(1.9)-(1.10)

J =
1

2πK
M2. (1.11)

Comparing the eqn.(1.7) and eqn.(1.11) we get

K =
1

2πα′
. (1.12)

Hence taking the value of α′ ≈ 1 GeV2, we get

K ≈ 0.16 GeV−2. (1.13)

Regge trajectories were further investigated deeply by G. Veneziano. He showed

in 1968 [37] that the amplitude of 2 → 2 meson-meson elastic scattering can be

interpreted as the sum of the amplitudes of the interactions among “states” obeying

J = α0 + α′M2
J , (1.14)

whereMJ is the mass of particle having spin J . This gives rise to the “dual resonance

model”. In this model, one calculates the amplitude for elastic scattering of mesons.

The basic assumption of the model is that the hadrons interact through the formation

of intermediate states (resonances). According to this model the sum of the scattering

amplitudes of the 2→ 2 meson-meson scattering is

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
, (1.15)

where s and t are the usual Mandelstam variables and

α(x) = α0 + α′x, (1.16)
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and Γ is the gamma function. It is clear from the expression in eqn.(1.15) that the

amplitude A(s, t) is symmetric under the exchange of s and t. It can be shown that

the expansion of the amplitude as a power series of s or t yields each term of the

expansion to be t or s channel Feynman diagrams. The amplitude has a remarkable

property. If one fixes s or t and expands the amplitude in eqn.(1.15) as a power series

of t or s, then the amplitude can be written as [38]

A(s, t) =
∞∑
J=0

g2
Jt
J

s−M2
J

, or A(s, t) =
∞∑
J=0

g2
Js

J

t−M2
J

, (1.17)

where g2
J =

g2(α′)J−1

J !
and MJ is given by eqn.(1.14). We can see from the above

eqn.(1.17) that each term in the summation corresponds to an s-channel or t-channel

process for having an intermediate resonance of spin J and mass MJ which obey

the linear relation, given in eqn.(1.14). We can observe that the amplitude can be

represented by either the sum of t or s-channels. This can be interpreted by crossing

symmetry. This symmetry implies that if we exchange the incoming momenta with

the outgoing momenta in the external legs, t or s, then we can get the amplitude of the

other, s or t. On the basis of dual resonance model, Susskind proposed the states to

Figure 1.2 (a) Sum of s-channels; (b) sum of t-channels.

be excitations of strings [39]. So if mesons are assumed to be states having quarks and

antiquarks attached by strings then we can represent the sum of the s and t channels
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by the diagram in Fig. 1.2. The strings sweep out a two dimensional surface which is

known as string worldsheet. We can see from this figure that topology of t-channel

worldsheet can be smoothly deformed into s-channel worldsheet, which shows the local

scale invariance of string theory. During the interaction among mesons, the strings

also interact with each other. Kalb-Ramond field, Bµν is used in the description of

interstring interactions.

A. A. Abrikosov predicted vortex of supercurrent in type II superconductivity

when magnetic field overcomes a critical value [40]. This vortex formation is the-

oretically explained in Ginzburg-Landau model [41]. Motivated by this model, H.

B. Nielsen and P. Olesen proposed a way of construction of vortex or flux tube in

a Higgs model where U(1) global symmetry is spontaneously broken [42]. The La-

grangian density of the model is

L = −1

4
F µνFµν +Dµφ (Dµφ)† +

1

2
µ2
(
φ†φ
)
− 1

4
λ
(
φ†φ
)2
, (1.18)

where φ is a complex scalar field and µ and λ are the constants. This Lagrangian den-

sity remains invariant under U(1) global symmetry. Associated equations of motion

are

�Aµ − ∂µ∂νAν = jµ = −
[
ie(φ†∂µφ− φ∂µφ†) + 2e2Aµφ†(x)φ(x)

]
, (1.19)

�φ =
1

2
(µ2 − λ|φ|2)− ie(2Aµ∂µφ+ φ∂µA

µ) + e2AµAµφ. (1.20)

The minimum of the potential

V (φ) =
µ2

2

(
φφ†
)
− 1

4
λ
(
φφ†
)2
, (1.21)

occurs at

| 〈φ〉 | = v =

√
µ

λ
. (1.22)
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Let us write

φ(x) = ρ eiχ(x), (1.23)

where ρ and χ(x) are the real functions of space-time. Invariance of φ under the

transformation χ → χ + 2πn, where n = 1, 2 . . ., shows that φ is single valued.

Assuming cylindrical symmetry around an axis, we can construct a vortex type field

configuration at

φ = ρ(r)einθ, (1.24)

where χ(x) = nθ(x) and r is the normal distance from the axis. Here ρ(r)→ v in the

limit r → ∞. It follows from the equation of motion of Aµ, given in eqn.(1.19), and

eqn.(1.23)

Aµ = − jµ

2e2
|φ|2 +

1

e
∂µχ(x), (1.25)

where

jµ =
1

2
ie(φ†∂µφ− φ∂µφ†) + e2Aµφ†(x)φ(x). (1.26)

The flux of F µν through two dimensional surface bounded by a circle at infinity is

Φ =

∫
F µνσµν =

∮
Aµdxµ. (1.27)

We assume that jµ in eqn.(1.25) vanishes at infinity and we get from the eqn.(1.25)

Φ = −1

e

∮
dxµAµ =

2πn

e
. (1.28)

Here n represents the number of winding around the vortex. Thus the magnetic flux

of the vortex lines is quantised, to be multiple of 2π
e
. Now we are considering the

vortex in static configuration. We take temporal gauge A0 = 0 and also E = 0. Then
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we see that the ‘kinetic energy’ of the gauge field E2 = 0, where Ei = F 0i. In this

configuration the vector potential around this vortex at r →∞ is given by

A(r) =
1

e
∇χ =

1

e
∇θ. (1.29)

We have taken n = 1, in the eqn.(1.24), which signifies that the vortex contains a

single unit of quantized flux. The flux is given by through a circle of radius r

Φ(r) = 2πrAθ(r), (1.30)

where Aθ(r) is the azimuthal component of A(r). Hence the magnitude of the mag-

netic field is

B(r) =
1

2πr

dΦ

dr
=

1

r

d

dr
(rA(r)). (1.31)

The magnetic field is along the z-axis. Taking θ component of eqn.(1.19) and using

eqn.(1.24), we have

−ie
r

2iρ2 + 2e2Aρ2 = −∂iFθi, (1.32)

which gives

d

dr

(
1

r

d

dr
(rA)

)
− 2e

(
1

r
+ eA

)
ρ2 = 0. (1.33)

There is no exact solution of the above equation. In the approximation where ρ = v

is constant (i.e. for r →∞), it is found

A(r) = − 1

er
− k

e
K1(|e|vr), (1.34)

where K1 is the modified Bessel function and k is the constant of integration. In the

limit r →∞, the solution becomes

A(r)→ − 1

er
− k

e

√
π

2evr
exp(−evr), (1.35)
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and lim
r→∞

√
φ†φ = v. The magnetic field corresponding to the vector potential becomes

|B(r)| → k

√
πv

2er
e−evr, r →∞. (1.36)

So we can see that the magnetic field deviates appreciably from zero only near the x3

axis in a region with characteristic length l, where

l =
1

ev
. (1.37)

When the global U(1) symmetry is spontaneously broken, the mass of the gauge boson

becomes

mV = ev. (1.38)

Therefore the magnetic field and hence the corresponding is confined within the flux

tube of radius r ∼ 1
mV

. In the static case, the eqn.(1.20) provides

1

r

d

dr

(
r
dρ

dr

)
−

[(
1

r
− eA

)2

− µ2 +
λ

2
ρ2

]
ρ = 0. (1.39)

Writing ρ = v+η, where η is a scalar field, we get the asymptotic form for the solution

to eqn.(1.39)

ρ = v(1− e−ξr), (1.40)

where ξ is a new characteristic length

ξ =
1

µ
, (1.41)

which measures the distance required for ρ to attain its asymptotic value v. The

integration constant k is chosen such a way that flux Φ(r) = 2πrA(r) shall go to zero

for ξ � r � l.

Vortex configuration of the field φ requires it to be single valued with respect

to spatial coordinates. Suppose the field φ is in a representation of group G. The
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vortex configuration of the field defines a mapping of the boundary of the vortex in

the physical space onto the group space [15, 25, 44]. But if a vortex configuration is

topologically equivalent to a point on a group manifold, then the configuration is not

stable. These mappings are unstable in a non-Abelian gauge theory because the first

homotopy of the group π1(G) = 0. If we take a group SU(2) whose group manifold

is a three sphere S3, then first homotopy group for this case π1(S3) = 0, because

this mapping means a map S1 → S3 i.e. a circle winds a three-sphere, which can

be shrunk to a point. This is schematically shown in the Fig. 1.3. When a global

Figure 1.3 S1 on S3 can be shrunk to a point P .

symmetry corresponding to a group G symmetry is spontaneously broken down to the

to U(1) symmetry, then the vortex is topologically stable, because π1(U(1)) 6= 0. But

for any gauge theory with unbroken SU(N) global symmetry π1(SU(N)) = 0 where

N ≥ 2. Hence unlike the Nielsen-Olesen model, there is no stable Abrikosov flux tube

in an unbroken SU(N) gauge theory. These can be formed by the Abelian projection

of a non-Abelian gauge theory where spontaneous symmetry breaking occurs [45,46].

We consider the topologically massive model which contains the Kalb-Ramond field

field. The Kalb-Ramond field plays an important role in the interstring interaction [8]

which we explain below.
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1.1 Kalb-Ramond field in interstring interaction

Abrikosov-Nielsen-Olesen (ANO) string with the quark and anti-quark at the ends

are models of mesons. The string contains chromoelectric flux. Flux tubes having

very tiny radius are string-like objects sweeping two dimensional world sheets. Such

a surface is parametrized by two parameters, say σ and τ . Action for a string is given

by Nambu-action [47]

S = − T

2π

∫
dσdτ

√
−h, (1.42)

where h is the determinant of the matrix

hab = ∂aX
µ∂bXµ, a, b = 0, 1. (1.43)

and T is a constant taken to make the action dimensionless. The determinant of the

matrix is

h = εabh
0ah1b = Ẋ2X

′2 −
(
Ẋ ·X ′

)2

, (1.44)

where ε01 = −ε10 = 1 and ε00 = ε11 = 0. Here Ẋµ = ∂Xµ

∂τ
and X ′µ = ∂Xµ

∂σ
. Hence the

Nambu-action, given in eqn.(1.42), becomes

S =

∫
dσdτ

√(
Ẋ ·X ′

)2

− Ẋ2X ′2. (1.45)

Now suppose we are considering a uniform motion of flux tube. Due to Lorentz

contraction, the Lagrangian density Lfluxtube of a flux tube, having very little width

and moving in the transverse direction of its length with three velocity of magnitude

v⊥, is

Lfluxtube ∝
∫ √

1− v2
⊥dσdt, (1.46)

where v⊥ = Ẋ −X′(Ẋ ·X′). This is the same as obtained from the Nambu action

when the parameter τ is taken to be t. The interaction between two open or closed
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string is mediated by Kalb-Ramond field and is given by

Lint =

∫
dσdτBµνẊ[µX

′
ν] (1.47)

=

∫
dσdτBµνσµν(x), (1.48)

where σµν(x) = Ẋ[µX
′
ν] and Bµν is the tensor potential constructed due to another

string at y as

Bµν(x) = gs

∫
dσdτσµν(y)G

(
(x− y)2

)
, (1.49)

where gs is the coupling constant having dimension of mass and G is the Green’s

function describing time symmetric interaction. We will not consider string config-

urations any further as they are not the focus of this thesis. Now we consider the

topological model 3+1 dimension containing the KR field.

1.2 Abelian topologically massive model in 3 + 1 di-

mension

The Abelian topologically massive model in 3+1 dimension is given by the Lagrangian

density

L = −1

4
F µνFµν +

1

12
HµνλHµνλ +

m

4
εµνρλBµνFρλ. (1.50)

Here Fµν = ∂µAν − ∂νAµ is the field strength of an Abelian gauge field Aµ, Hµνλ =

∂µBνλ + ∂νBλµ + ∂λBµν is the field strength for the tensor field, m is the coupling

constant of the topological term which has dimension of energy. The Lagrangian

density is invariant under the two independent gauge transformations

Aµ → Aµ + ∂µθ, Bµν → Bµν , (1.51)
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and

Aµ → Aµ, Bµν → Bµν + ∂[µΛν]. (1.52)

Confinement of the quarks in hadrons can be explained by the formation of chromo-

electric flux tube between the quarks at low energy. The presence of the Kalb Ramond

field may be used to explain the dynamics of the flux tubes in QCD vacuum. The

term εµναβFµνBαβ has a special characteristic. It does not depend on the topology

of the space-time. This can be seen when we write that part of the action in curved

space time:

SBF =

∫ √
−geαβµνBαβFµνd

4x, (1.53)

where eµναβ is the Levi-Civita tensor in curved space-time and g is the determinant

of the metric tensor gµν and it is related to εµναβ as

eµναβ =
1√
−g

εµναβ. (1.54)

where ε0123 = −1. Using eqn.(1.54), we can rewrite the eqn.(1.53) as

SBF =

∫
εαβµνBαβFµνd

4x. (1.55)

So SBF does not depend on the metric of the space-time. As a consequence when

we vary the whole action S =
∫

L
√
−g d4x with respect to metric tensor gµν , the

contribution from the part SBF is zero. Hence we can conclude from the definition of

energy momentum tensor

θµν = − 2√
−g

δS

δgµν
, (1.56)

that mB ∧ F has no contribution in θµν i.e. the energy momentum tensor does not

contain any mass term. That is why the massive bosons in this model are called

to be topologically massive bosons. Let us see from equations of motion of the Aµ
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and Bµν how this model provides massive Aµ field keeping U(1) symmetry unbroken

unlike Higgs mechanism. The equations of motion for Aµ and Bµν are found from the

Lagrangian density in eqn.(1.50), and they are

∂µF
µν = −m

6
ενµρσHµρσ, (1.57)

∂ρH
ρµν =

m

2
εµναβFαβ. (1.58)

From the eqn.(1.57), we have

1

m
ενµρσ∂αF

αν = Hµρσ. (1.59)

Using eqn.(1.58) and eqn.(1.59), we get

1

m
ενµρσ∂

µ∂αF
αν =

m

2
ερσγτF

γτ . (1.60)

Putting F µν = ∂µAν − ∂νAµ in the above equation, we get

−εµνρσ�∂µAν =
m2

2
εµνρσF

µν . (1.61)

Hence

(
� +m2

)
F µν = 0. (1.62)

It is the Klein-Gordon (KG) equation for F µν with a mass m. Now we will see that

how the massive KG equation of the gauge field is found. We can find from eqn.(1.58)

εµνρλ∂ρHλ = mεµνρλ∂ρAλ. (1.63)

Here Hλ is the dual field of Hµνρ:

Hµ = −1

6
εµαβγH

αβγ. (1.64)

The general solution of eqn.(1.63) is

Hλ = mAλ + ∂λη, (1.65)
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where η is a scalar field. Using eqn.(1.64)and eqn.(1.57), we get

�Aν − ∂ν (∂.A) = −m2Aν −m∂νη, (1.66)

which gives

(
� +m2

)
Aν − ∂ν (∂ · A−mη) = 0. (1.67)

With the gauge choice ∂ · A = mη, we find

(
� +m2

)
Aν = 0. (1.68)

It is the KG equation of a massive vector field and the coupling constant m of the

two-point coupling B ∧ F appears as mass of the Abelian vector field. The mass is

not a gauge artifact because it appears in the KG equation of F µν without being in a

particular gauge choice. So the model contains the massive mode of one form gauge

field. We can see the coupling constant m plays the role of the mass of the gauge

bosons from the eqn.(1.57). E. Cremmer and J. Scherk in their paper [48] show how

the dual theory of the model in eqn.(1.50) is equivalent to Stuckelberg Model [49].

Dual of the field strength of Kalb-Ramond field is defined in eqn.(1.64). We can see

from the eqn.(1.64), that ∂µHµ = 0. This constraint can be taken into consideration

for the construction of a dual Lagrangian with the introduction of a Lagrangian

multiplier field χ(x). The introduction is made such a way that the variation of dual

Lagrangian with respect to field χ gives ∂µHµ = 0. The dual Lagrangian density with

the Lagrange multiplier χ in the paper is

LD = −1

4
F µνFµν −

1

2
HµHµ −mAµHµ + ∂µχH

µ, (1.69)

where ∂µχHµ and AµHµ are obtained after partial integration. This Lagrangian

density remains invariant under the transformation

Aµ → Aµ +
1

m
∂µf, χ→ χ+mf. (1.70)
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We can rewrite the dual Lagrangian density as

LD = −1

4
F µνFµν −

1

2

(
HµHµ + 2Hµm

(
Aµ − 1

m
∂µχ

)
+m2

(
Aµ − 1

m
∂µχ

)2
)

+
1

2
m2

(
Aµ − 1

m
∂µχ

)2

= −1

4
F µνFµν −

1

2

{
Hµ +m

(
Aµ − 1

m
∂µχ

)}2

+
1

2
m2

(
Aµ − 1

m
∂µχ

)2

.(1.71)

The partition functional for this dual model

Z =

∫
DχDHµDAµ exp (iLD) . (1.72)

Writing

H
′µ = Hµ +m

(
Aµ − 1

m
∂µχ

)
, (1.73)

we get DHµ = DH ′µ. Integrating over the field Hµ we get generating function for the

n-point propagator,

Z =

∫
DχDAµ exp

(
i

∫ (
−1

4
F µνFµν +

1

2
m2

(
Aµ − 1

m
∂µχ

)2
)
d4x

)
. (1.74)

It is a partition functional for the Abelian Stueckelberg model. So the dual theory of

the Abelian topologically massive model is equivalent to a Stueckelberg model [49].

We note that there is a topologically massive model in (2+1) dimensions with mass

m as a coupling parameter of a topologically invariant Chern-Simons term [50,51]

Lcs = −1

4
FµνF

µν +
m

2
εµνλFµνAλ. (1.75)

This Lagrangian density is invariant under the gauge transformation

Aµ → Aµ + ∂µΛ, (1.76)

where Λ is a scalar field which vanishes at infinity. The term εµνλFµνAλ does not

depend on the metric of the space-time, just like the B ∧ F term in four dimensions.
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The equation of motion of the gauge field becomes

(
� +m2

)
F µν = 0. (1.77)

So we can see that the vector field gets a non-zero pole at tree level which is absent

in its energy momentum tensor. The non-Abelian generalization of the model in

eqn.(1.75) to the SU(N) gauge group is

Lcs = −1

4
F µν
a F a

µν +
1

2
mεµνα

(
F a
µνA

a
α − gfabc

2

3
AaµA

b
νA

c
α

)
, (1.78)

where F µν
a = ∂µAνa−∂νAµa−gfabcAµAν , g is the gauge coupling constant in the SU(N)

gauge theory and fabc is the structure constant of the SU(N) group. This model can

be considered as a toy model in understanding the dynamics of color charges in 2+1

dimensions. But the term F ∧ A shows violation of time reversal or CP-symmetry

which is not suitable for description of QCD.

1.3 Non-Abelian topologically massive model

Next we consider the non-Abelian generalization of the topologically massive Abelian

model in 3+1 dimensions [6, 7]. This is given by the Lagrangian density

L = −1

4
F µν
a F a

µν +
1

12
H̃µνλ
a H̃a

µνλ +
m

4
εµνρλBa

µνF
a
ρλ. (1.79)

Here the field strengths corresponding the Yang-Mills field Aµa and the two-form gauge

field are respectively

F µν
a = ∂µAνa − ∂νAµa − gfbcaA

µ
bA

ν
c , (1.80)

and

H̃a
µνλ = D[µB

a
νλ] − gfbcaF b

[µνC
c
λ], (1.81)
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where Aµa , Bµν
a and Cµ

a are fields in the adjoint representation of the gauge group,

taken to be SU(N). Unlike the Abelian model, we have an extra field Ca
µ in this

model. It is an auxiliary field [72] which assures the invariance of the Lagrangian

density under the transformations,

Aaµ → Aaµ, Ba
µν → Ba

µν +
(
D[µθν]

)a
, Ca

µ → Ca
µ + θaµ, (1.82)

where θaµ is a vector field in adjoint representation of SU(N). Including the ghost

fields and Nakanishi-Lautrup fields corresponding to the Aµ and Bµν fields, we get

the full action [7] as

S = S0 +

∫
d4x[hafa +

ξ

2
haha + haµ(faµ + ∂µna)

+ βa(Dµβ
a − gfabcωbµωc) +

1

2
ηhaµh

µa − ∂µω̄aµαa + ᾱa∂µω
aµ

+ ζᾱaαa + ω̄a∂µD
µωa

+ ω̄aµ{gfabc∂ν(B
µν
b ω

c) + ∂νD
[µων]a + ∂ν(gf

abcF µν
b θc)}], (1.83)

where S0 is the action corresponding to the Lagrangian density in the eqn.(1.79). Here

fa = ∂µAaµ, fµa = ∂νB
νµ
a and h and hµ are the Nakanishi-Lautrup fields corresponding

to the A and B fields, ω and ω̄ are the ghost fields of A, ωµ and ω̄µ are the vector ghost

fields of Bµν , β and β̄ are the ghost fields of the vector ghost field, α and ᾱ are the

Grassmann valued auxiliary fields, n and θ are auxiliary fields. This model contains

massive non-Abelian gauge field and it was shown to be BRST invariant [6, 73, 74].

In [73, 74], it is seen the model is also invariant under ant-BRST symmetry. CP

symmetry is not violated in this model. The parity of the Kalb- Ramond field is

found from this coupling in eqn.(1.48). Since under parity transformation X0 → X0

and X i → −X i, the action will be parity invariant if

B0i → −B0i, Bij → Bij. (1.84)
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The massless Kalb-Ramond field has only one degree of freedom where massive Kalb-

Ramond field has three [8]. This is shown in the following section.

1.4 Degrees of freedom of massless and massive Kalb-

Ramond field

The massless two-form gauge field has one degree of freedom. It can be seen from

its vector gauge transformation and the Lorenz gauge condition in the following

way. If we consider the momentum space and the frame where the momentum

kµ = (k0, 0, 0, k0), we can construct null plane coordinate

k1 = k2 = 0, k− =
k0 − k3√

2
= 0, k+ =

k0 + k3√
2
6= 0. (1.85)

Using the null plane coordinates , we can write the vector gauge transformation of the

two form field, B′µν = Bµν + ∂µΛν − ∂νΛµ, in momentum space with the momentum

coordinates given in eqn.(1.85)

B̃′+− = B̃+− + k+Λ−, (1.86)

B̃′+i = B̃+i + k+Λi, (1.87)

B̃′−i = B̃−i, (1.88)

B̃′12 = B̃12, (1.89)

where B̃ is the Kalb-Ramond field in momentum space and Λ− =
Λ0 + Λ3√

2
. Here

Λi designates Λ1 and Λ2. We can observe from the above transformations that B−i

and B12 remain invariant under the vector gauge transformation. Now using the

coordinates in eqn.(1.85) and the four product:

k.x = k0x0 − k.x = k+x− + k−x+, (1.90)
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where

x+ =
x0 + x3

√
2

, x− =
x0 − x3

√
2

, (1.91)

we get from the Lorenz gauge condition ∂ρBρσ = 0 that

k+B̃−i = 0, (1.92)

k+B̃−+ = 0, (1.93)

which imply that B−i = 0. Now we can see from eqn. (1.89) that B̃12 is the gauge

invariant component which remains non-zero under the gauge transformation. There-

fore the massless Bµν field has only one degree of freedom. On the other hand, massive

Bµν field has three degrees of freedom. This can be seen from the tensor represen-

tation of the Lorentz group ( [58], Chap. 5) in the following way. The homogeneous

Lorentz transformation of the Bµν field is

B
′µν(x′) = Λµ

ρΛ
ν
σB

ρσ(x), (1.94)

where Λµ
ν is the Lorentz transformation matrix. For infinitesimal Lorentz transfor-

mation

Λµ
ν = δµ ν + ωµ ν , (1.95)

where ωµ ν is an infinitesimal antisymmetric matrix. Using eqn.(1.95), we can find a

spin matrix I corresponding to a representation from the transformation of a field

Φ
′l(x′)− Φl(x) =

1

2
(Iρσ)ll′ Φl′ωρσ, (1.96)

where Φl(x) is a l-type field. In the case of the two form field, the spin matrix becomes

(Iρσ)µναβ =
(
ηµ[ρδσ]

α δ
ν
β + ην[ρδ

σ]
βδ

µ
α

)
. (1.97)
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The spin of the massive Bµν field can be found from the one-to-one correspondence

between the matrix representation of spin-j angular momentum J(j) in the rest frame

of the massive field, and the spin matrix I as

∑
σ̄

εµν(σ̄)
(
J(j)
)2

σ̄σ
=
(
I2
)µν
ρλ
ερλ(σ), (1.98)

where εµν(σ) is the polarization tensor corresponding to the field Bµν with helicity

σ. Here I2 = IkIk and Ik = 1
2
εijkI ij, k = 1, 2, 3. For the massive field, J(j) is matrix

representation of the generators of SO(3) group. Starting from eqn.(1.97), we can

get

(Ik)µναβ = εijk
(
ηµiδjαδ

ν
β + ηνiδjβδ

µ
α

)
, (1.99)

and

(Ik)0l
0m = εlmk, (Ik)0l

mn = (Ik)mn0l = 0, (Ik)pqnm = (εpnkδqm + εqmkδpn) , (1.100)

where m,n, p, q = 1, 2, 3. As a consequence, we find

(
I2
)0m

0n
= 2δmn ,

(
I2
)mn

0q
=
(
I2
)0q

mn
= 0, (1.101)(

I2
)mn
pq

=
(
4δmpδnq − 2δm[nδq]p

)
, (1.102)

which leads us to

∑
σ̄

(
J(j)
)2

σ̄σ
ε0m(σ̄) = 2ε0m(σ), (1.103)

∑
σ̄

(
J(j)
)2

σ̄σ
εpq(σ̄) = 2εpq(σ). (1.104)

The eigenvalue of the
(
J(j)
)2

σ̄σ
is j(j+1)δσσ′ where j ≥ 0. From the above equations,

we can see that j = 1 so that j(j + 1) = 2. Hence the no. of degrees of freedom of a

massive Bµν field 2j + 1 = 3 exactly like like that for a massive gauge field.
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Mass of gauge bosons also gives a possible explanation of confinement of gluons

in QCD. K. Nishijima, T. Kugo and I. Ojima gave the explanation from the Becchi-

Rouet-Strora-Tyutin (BRST) [52–54] symmetry in a unbroken SU(N) gauge theory.

We will discuss the their argument in the next section.

1.5 Massive gauge boson and confinement

The basic argument is that gluon and quarks cannot be physical states defined via

BRST symmetry because they are not found to be isolated in the experiments. This

interpretation shows that massive gauge boson plays a key role in this interpretation

for the unbroken gauge theory. I will discuss their arguments below.

Every gauge theory remains invariant under BRST symmetry even after gauge-

fixing. For example, let us consider the Lagrangian density of pure Yang-Mills theory

in the Lorenz gauge, including the Nakanishi-Lautrup (NL) field Ba(x) and ghost

fields, ωa(x) and ω̄a(x),

L = −1

4
F µν
a F a

µν +
ξ

2
BaB

a + ∂µA
µ
aB

a + ∂µω̄a (Dµω)a , (1.105)

where ξ is the gauge-fixing parameter. This Lagrangian density is invariant under

the transformation

δAµa = ε (Dµω)a = ε (∂µωa − gfbcaAµbωc) , (1.106)

δωa =
1

2
gεfbcaωbωc, (1.107)

δω̄a = εBa, (1.108)

δBa = 0, (1.109)

where ε is an infinitesimal Grassmann number and fabc is the structure constant of

SU(N) group. The Noether charge corresponding to this symmetry is QB which is
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the generator of BRST symmetry,

QB =

∫
d3x

[
B · ∂0ω + gB · (A0 × ω) +

1

2
g∂0ω̄ · (ω × ω)

]
, (1.110)

where we use the notation XaY a = X ·Y and (X × Y )a = fabcXbYc for any two fields

X, Y = B, ∂0ω,A0, ∂0ω̄, ω. This charge is nilpotent, which means

Q2
B |Φ〉 = 0 ∀ |Φ〉 ∈ V , (1.111)

where V is the Fock space. The physical states |phy〉 in the whole Fock space are the

states which are annihilated by BRST charge QB

QB |phy〉 = 0, (1.112)

but with the condition

|phy〉 6= QB |φ〉 , (1.113)

where |φ〉 is any other state in the Fock space. So physical states belong to a subspace

Vphys of the whole Fock space. Next we consider the equation of motion of the non-

Abelian gauge field, in the form obtained by I. Ojima [55]:

∂µF
µν = JνC + {QB, D

µω̄}, (1.114)

where the gauge indices are suppressed. Here JµC is the Noether current corresponding

to global color symmetry. Now we will see how the eqn.(1.114) is obtained from the

Lagrangian density in eqn.(1.105). The Lagrangian density of pure Yang-Mills theory

can be written, suppressing the gauge indices as

L = −1

4
F µν · F a

µν +
ξ

2
B ·B + ∂µA

µ ·B + ∂µω̄ ·Dµω. (1.115)

It can be seen that the Lagrangian density is invariant under global SU(N) transfor-

mation of the fields

δΦa = gf bcaθbΦc, Φ = A,B, ω, ω̄. (1.116)
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The color current becomes

JµC = g(Aν × F µν) + g(Aµ ×B)− g (ω̄ × (Dµω))− g(∂µω̄ × ω), (1.117)

where the guage index has been suppressed, and the equation of motion of the gauge

field is

DµFµν = ∂νB − g(∂νω̄ × ω). (1.118)

Now from the BRST transformation of the ghost fields, we can write

{QB, Dµω̄} = ∂µB − g (Dµω × ω̄)− g (Aµ ×B) . (1.119)

Substituting ∂νB in eqn.(1.119) from eqn.(1.118) , we get

{QB, Dνω̄} = DµFµν + g(∂νω̄ × ω)− g (Dνω × ω̄)− g (Aν ×B) . (1.120)

Using the explicit form of JµC as given in the eqn.(1.117), we have from the above

equation

∂µF
µν = JνC + {QB, D

νω̄}, (1.121)

which is the eqn.(1.114), as we set out to derive. The global Noether charge in a

model will not be broken spontaneously when the Noether current Jµ corresponding

to the charge does not contain any massless pole [56]

〈0|Jµ|ψ〉 = 0, (1.122)

where |ψ〉 is a state of massless particle. In this situation, the vacuum is annihilated

by the global color charge. Let us take the matrix element for both side of eqn.(1.114)

〈0|∂µF µν |ψ〉 = 〈0| (JνC + {QB, D
νω̄}) |ψ〉 . (1.123)
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Since the global charge QC is unbroken in QCD, we have 〈0|J0
C |ψ〉 = 0. Hence we

have from the above equation

〈0|∂µF µν − {QB, D
νω̄}|ψ〉 = 0. (1.124)

So either each individual matrix element is zero or the contribution of massless pole

from one is cancelled by the other. If we consider the first case where the individual

matrix elements are zero, then we have

〈0|∂µF µν |ψ〉 = 〈0| (�Aν − ∂µ∂νAµ − ∂µ(gAµ × Aν) |ψ〉 = 0. (1.125)

If the gluon state |g〉 is a massless state, then 〈0|∂µF µν |g〉 6= 0, it provides a massless

pole. As a consequence 〈0|JνC |ψ〉 becomes non-zero, which implies that the color

symmetry is broken spontaneously which is not our requirement. Hence we can say if

color symmetry is to be an unbroken symmetry, 〈0|∂µF µν |ψ〉 = 0. So we can conclude

that |g〉 should be massive. Now we consider the next matrix-element

〈0|{QB, D
νω̄}|ψ〉 = 0. (1.126)

Kugo-Ojima showed that [57] the left hand side of the above equation satisfies

〈0|{QB, (D
νω̄)a}|ψ, c〉 = −(δac + uac)∂

νD+(x− y), (1.127)

where |ψ, c〉 is massless particle state with the gauge index c and uac is a dynamical

parameter defined as the residue of the pole of g (Aµ × ω̄) at p2 = 0 and D+(x − y)

is the correlation function of the massless asymptotic fields of anti-ghost and ghost

fields:

〈0|γ̄a(x)γb(y)|0〉 = −iδabD+(x− y). (1.128)

where γa and γ̄a are defined as the free-field limits of ωa and ω̄a respectively

lim
x0±∞

ωa(x) = γa(x) + . . . (1.129)

lim
x0±∞

ω̄a(x) = γ̄a(x) + . . . (1.130)
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So the matrix-element 〈0|{QB, (Dνω̄)a}|ψ, c〉 = 0, if uab = −δab . Hence the global

charge QC remains unbroken according to our requirement only if uab = −δab . Now we

consider the second case where massless poles from the matrix elements 〈0|∂µF µν |ψ〉

and 〈0|{QB, D
νω̄}|ψ〉 = 0 cancel each other so that 〈0|Jν |ψ〉 = 0. In this situation the

gluons are massless. But the massless gauge field is not compatible with the cluster

decomposition principle that I will explain below.

1.5.1 Mass gap and cluster decomposition property in gauge

theory

The mass of the gauge boson plays a very important role in the analysis of scattering

phenomena among gauge bosons. The inner-product of the polarization vectors of a

one-form gauge field is given by

εµr εsµ = −ηrs, r, s = 0, 1, 2, 3. (1.131)

It is not positive definite. For the case of a vector space with positive indefinite

metric, mass gap [78] plays a role in the cluster decomposition property [58–60,75] in

the theory. Cluster decomposition principle says that two events separated by very

large space-like distance are uncorrelated, i.e. one events cannot affect the other. H.

Araki, K. Hepp and D. Ruelle [59, 76] established cluster decomposition property in

scattering theory considering the axioms :

(i) translational invariance : this implies the existence of conservation of energy

and momentum in a physical process. This implies the S-matrix operator commutes

with four momentum Pµ operator in inhomogeneous Lorentz group

[S,Pµ] = 0. (1.132)

(b)local commutativity: this means if O1(x) and O2(y) are two observables

measured at the space-time point x and y, then they commute with each other at
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spatial infinity:

lim
|x−y|→∞

[O1(x),O1(y)] = 0. (1.133)

This implies that the measurement of one observable is unrelated with the measure-

ment of the other observable when the measurements are made at spacelike separated

points.

(c) uniqueness of vacuum: this means the ground state of the system does not

have degenerate eigenvalues of Hamiltonian.

(d) spectrum condition: this means the energy spectrum of the system is

bounded from the below.

Using these properties they have shown that

(a) With a mass gap

or

(b) without a mass gap

The function h12(ξ) defined as

h12 = | 〈0|B1(x1)B2(x2)|0〉 − 〈0|B1(x1)|0〉 〈0|B1(x2)|0〉 |, (1.134)

(1.135)

where

Bi(xi) =

∫
fi(x

′
1, x
′
2, . . . , x

′
r)

r∏
n=1

d4x′nΦ(xi + xn), (1.136)

where fi is a rapidly decreasing C∞ test function with compact support and Φ is a

generic designation of field operator or product of field operators. From the properties
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mentioned in (a)-(d), they showed that h12 satisfies the inequality:

h12 ≤



C[ξ]−
3
2 exp(−m[ξ])ξ2N

(
1 + ξ0

ξ

)
or

C ′[ξ]−2[ξ]2N
(

1 + |ξ0|
[ξ]2

)
,

(1.137)

where ξ = |x1−x2| and [ξ] is the shortest space-like distance between ξ and a certain

compact set which depends on the compact supports and ξ0 is the time component

of ξ. N is a certain non negative integer , which is non-zero and non-negative for

positive indefinite metric and N = 0 for positive definite metric, C and C ′ are the

constants which do not depend on ξ. We can see from the eqn.(1.137), that only for

the case of mass gap, h12 → 0 if ξ →∞, where ξ = |x1− x2|. Now we will see how it

affects S-matrix. Perturbative analysis of the scattering phenomena depends on the

definition of the S-matrix.

S = lim
ε→0
T
[
exp

(∫ ∞
−∞

dtHε(t)

)]
, (1.138)

where the T signifies the time-ordered product of the operators and Hε
I(t) is the

interaction Hamiltonian in the interaction picture, with an adiabatic switching factor

e−ε|t|

Hε
I(t) = e−ε|t|

∫
d3xHI(x), (1.139)

where HI is the interaction Hamiltonian density. Due to presence of a mass gap in the

gauge theory the correlation between two interactions placed at a infinitely spacelike

distance becomes

lim
|x−y|→∞

〈T HI(x)HI(y)〉 = 〈HI(x)〉 〈HI(y)〉 (1.140)

hence they are uncorrelated. Thus the S matrix of a process at a point x cannot be

related to the S matrix of a process at another y when the spatial separation of x and
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y becomes infinite. This is the requirement in a causal theory. Hence the causality

required by the Lorentz invariance of the S-matrix is maintained in a gauge theory

with a mass gap.

In summary, we see that massiveness of gauge field plays an important role in the

analysis of confinement as well as in the scattering phenomena of gluons. Hence we

do not consider the case where massless Yang-Mills gauge bosons are present with

unbroken color charge QC =
∫
J0
Cd

3x i.e. the case where massless poles from the

matrix element 〈0|∂µF µν |ψ〉 are cancelled by massless poles in 〈0|{QB, D
νω̄}|ψ〉.

There are other possibilities of having massive Yang-Mills gauge bosons in 3+1

dimension which we will discuss now.

1.6 Some other models for massive gauge bosons in

3+1 dimension

The non-Abelian Stuckelberg model in 3+1 dimension, given by the Lagrangian den-

sity

L = −1

4
F µν
a F a

µν +
1

2
m2

(
Aµa −

1

m
bµa (Θ)

)2

, (1.141)

contains a massive Aµa field, where

bµa = Eab∂µΘb, (1.142)

Eab(θ) =
∞∑
n=0

1

(n+ 1)!

[(
igΘ̄

m

)n]ab
. (1.143)

where Θa(x) is a scalar field. Here Θ̄ab = ifabcΘc. This model is invariant under the

gauge transformations:

Aaµ → Aaµ +Dab
µ E

bc(Θ)δθc, Θa → Θa +mδθa, (1.144)
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where Dab
µ = δab∂µ − gf bcaAcµ and δθa is infinitesimal transformation parameter. But

this model is not renormalizable in 3+1 dimension [64–67], whereas the topologically

massive model in 3+1 dimension is renormalizable [7].

One of the possibilities is that the mass of the gauge boson has purely chro-

modynamic origin i.e. the mass is generated due to non-linear interactions among

gauge bosons and among gauge bosons and ghosts. This mass is known as dynami-

cally generated mass. This is found by truncating the Schwinger-Dyson equation for

the propagator of the gluon field at low energy i.e. in the non-perturbative regime.

The propagator of non-Abelian gauge field can be written from truncation of the

Schwinger- Dyson equation [68,69]

∆µν = − 1

k2 −m2(k2)

[
gµν − (1− ξ)k

µkν

k2

]
. (1.145)

The pole of scalar part of the propagator should depend on the momentum scale

m(k2). But we know that at higher energy scale , the propagator must behave like

a propagator of massless particle , so that the theory can describe renormalizablility.

Hence the dynamical mass m(k2) → 0 with the increase of momentum scale. But

the topologically massive model in 3+1 dimension is renormalizable [7] with a mass

which does not vanish in the limit k2 →∞.

There is another model where mass m 9 0 in the limit k2 → 0. The model was

developed by Curci and Ferrari [70], and it contains a Proca-massive gauge boson

and is given by the Lagrangian

LCF = −1

4
F µν
a F a

µν −
1

2

[
(Aaµ)2 + 2ξω̄aωa

]
+

1

2
ω̄a (∂µDµ +Dµ∂µ)ωa

− 1

2ξ
(∂µA

µ
a)2 +

1

8
g2(ω̄ × ω)2. (1.146)

This model is invariant under the global transformations

δAµa = (Dµω)a, δωa = −i1
2

(ω × ω)a, δω̄a = −1

ξ
∂µAaµ +

g

2
(ω̄ × ω)a. (1.147)
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Here b and c are ghost fields. But these transformations are not BRST transforma-

tions. I. Ojima showed that [71] the Noether charge corresponding to the global

transformations in eqn.(1.147) is not nilpotent. But the four dimensional topologi-

cally massive model is BRST invariant [6].

We will consider 2 → 2 elastic scatterings among topologically massive gauge

bosons in the next chapter. This analysis needs the complete propagators of A and

B fields which we are going to derive below.

1.7 Complete propagators of A and B fields

We will consider the elastic scatterings among topologically massive bosons in this

thesis. This analysis requires the propagators of A and B fields. We get the propaga-

tors of the A and B fields when we introduce the gauge fixing terms in the Lagrangian

density for Abelian fields in eqn.(1.50). Then we have

Lgf =
1

4
F µνFµν +

1

12
HµνλHµνλ −

1

2ξ
(∂µA

µ)2 +
1

2η
(∂µB

µν)2. (1.148)

where ξ and η are the gauge fixing parameters. The topological term is also a

quadratic term containing both the A and B fields. If we want to calculate the prop-

agator of the fields we should take all the quadratic terms in the Lagrangian density.

First we exclude B ∧ F coupling from our consideration and get the propagators of

Aaµ and Bρλ
a fields :

i∆µν = − i

k2

(
gµν − (1− ξ)k

µkν

k2

)
, (1.149)

i∆µν,ρλ =
i

k2

(
gµ[ρgλ]ν − (1− η)

kµk[λgρ]ν − kνk[λgρ]µ

k2

)
. (1.150)

Then we consider the quadratic derivative coupling term in the B ∧ F term as an

interaction

Lquad =
m

2
εµνρλBµν∂ρAλ, (1.151)
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and obtain the vertex rule for the B − A coupling, for the vertex, shown in the

Figure 1.4 B − A vertex from the B ∧ F term

Fig. 1.4

iVµν,λ = −mεµνλρkρ. (1.152)

Hence we get the complete propagator of the A field by taking an infinite number

Figure 1.5 Massive A propagator by summing over B insertions

of insertions of the B − A vertex and the B propagator, given in eqn.(1.150). This

process is shown in the Fig. 1.5 and the sum of diagrams can be written as the infinite

sum

iDµν = i∆µν + i∆µµ′
1

2
iVσρ,µ′i∆σρ,σ′ρ′

1

2
iVσ′ρ′,ν′i∆ν′ν + · · ·

= −i

[
gµν − (1− ξ)kµkν

k2

(k2 −m2)
− ξm2 kµkν

k4(k2 −m2)

]
, (1.153)

which is the propagator of a massive vector boson of mass m. The factors of 1
2
com-

pensate for double-counting due to the anti-symmetrization of the indices. Similarly

for the tensor field we have

iDµν,ρλ =

[
gµ[ρgλ]ν + (1− η)

k[µk[λgρ]ν]
k2

k2 −m2
− ηm2 k[µk[λgρ]ν]

k4(k2 −m2)

]
. (1.154)

The propagators of A and B fields show power counting renormalizablity in the non-

Abelian topologically massive model. The reason is the following. The superficial
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degree of divergence d for a loop diagram is given by

d = 4− nlEl −
∑
i

δi. (1.155)

Here nl is the mass dimension corresponding to the l type fields and El is the number

of their external lines. δi is the mass dimension of the coupling constant present at

i-th vertex. In Yang-Mills theory, the mass dimension of the gauge coupling constant

[g]=0 in 3+1 dimension. So if we include more loops in a loop diagram keeping

number of the external lines fixed, then we should have the same d. We can rewrite

the propagator of Bµν field as

iDµν,ρλ = i

[
gµ[ρgλ]ν +

k[µk[λgρ]ν]
k2

k2 −m2
− η

k[µk[λgρ]ν]

k4

]
. (1.156)

We can see from the eqn.(1.153) and eqn.(1.156) that the propagators of A and B

fields behave as k−2 in the limit k → ∞. So for example in the diagram shown in

Fig. 1.6, we get the same d with the increase of loops. So the model becomes power

Figure 1.6 Many loop correction of quartic coupling AAAA.

counting renormalizable for d ≤ 0.

Quantum corrections are generally infinite in quantum field theory. So we re-

quire counterterms for removing those infinities. If the cancellations of infinities are

obtained from an infinite number of counter-terms, then the theory is not renormaliz-

able. But the theory becomes renormalizable if the counterterms are finite in number.
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The classical Lagrangian density of Yang-Mills gauge theory obey BRST symmetry.

J. Zinn-Justin found that if the quantum effective action Γ of a model is to remain

invariant under global symmetry, then the condition∫
d4x 〈∆l(x)〉Jχ

δLΓ[χ]

δχl
= 0 (1.157)

must be obeyed. Here χl(x) is any field present in the Lagrangian density and the

∆l(x) is the change of the field under BRST transformation

δχl(x) = θ∆l(x). (1.158)

Here θ is the anticommutating parameter for the BRST transformation. 〈. . .〉Jχ de-

notes a vacuum expectation value taken in the presence of the current Jχ. The current

is defined as

Jχ =
δLΓ

δχ
. (1.159)

δ

δLχ
is the functional derivative acting from the left on the Γ. The eqn.(1.157) is

known as Zinn-Justin equation. It is used to analyse the renormalization of a gauge

theory. It can be shown in a renormalizable non-Abelian gauge theory that at every

order the quantum effective action obeying the eqn.(1.157) contains the terms which

are proportional to the term present in the classical Lagrangian density [25, 81–83].

So the counterterms needed are finite in number. As a consequence, the couplings

among fields in the classical Lagrangian density are ‘rescaled’. The renormalization of

the massless Yang-Mills theory is shown algebraically in [25,83,84]. The non-Abelian

topologically massive model in eqn.(1.83) is shown to be renormalizable algebraically

in [7] with the BRST invariance [6].

In the next chapter, we have considered unitarity of S-matrix in 2 → 2 elastic

scattering process among massive gluons at tree level. We have considered SU(2)
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gauge theory to see the unitarity in the 2→ 2 elastic scattering processes of longitu-

dinally polarized massive gauge bosons. We consider two different cases. The mass of

the gauge boson can be generated by Higgs mechanism or they are topologically mas-

sive. The 2− 2 elastic scattering process involving longitudinally polarized bosons at

tree-level is not unitary if we consider only the tri-linear and quartic interactions con-

sidered from the pure Yang-Mills Lagrangian density, which we will see in the chapter

2. We will see how the interaction among Higgs field and gauge bosons assure the

unitarity of S-matrix in SU(2) gauge theory. Next we will consider the action, given

in the eqn.(1.83) to check the unitarity for topologically massive bosons. We have cal-

culated the Feynman amplitudes of 2 → 2 scattering using various couplings among

Bµν
a and Aµa and see if unitarity at tree-level survives.

In chapter 3, we consider the behaviour of the gauge coupling constant g by varying

the energy scale. The two-form field has one degree of freedom like a scalar field has.

We have seen from the eqn.(1.2) and eqn.(1.3) that the contribution of scalar field is

positive. So we would like to see if the contribution from the two form field is the

same as the scalar field provides in the β function. This leads us to work out one

loop β function. We will discuss the result there.



Chapter 2

Unitarity of ALAL→ ALAL scattering

at tree level.

2.1 Tree level calculation

In this chapter we will see the unitarity in the 2 − 2 scattering process between two

longitudinally polarized massive gauge bosons i.e. ALAL → ALAL at tree level. In the

electroweak sector of the standard model, Higgs mechanism plays an important role in

providing unitarity of S-matrix of various tree level processes involving longitudinally

polarized W and Z bosons and fermions, for example e+e− → W+W−, W+W− →

W+W− etc. which are shown explicitly in [87–89]. But among these scattering

processes, we see unitarity is maximally violated in the 2→ 2 processes involving only

longitudinally polarized vector bosons because without the Higgs mediated channels,

their scattering amplitudes grow with square of energy of the centre of momentum

frame i.e. M ∼ E2, which we will see in this chapter. On the scattering process

involving fermions with same helicity, it was found that the amplitude grows asM∼

E [87–89].

39
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We have mentioned in the previous chapter that we consider a non-Abelian topo-

logically massive model in 3+1 dimensions where Yang-Mills gauge bosons are massive

with unbroken SU(N) global symmetry. We will see in this chapter whether unitar-

ity of 2→ 2 elastic scattering process among topologically massive Yang-Mills gauge

bosons is violated. We will take the gauge group to be SU(2) group for simplicity and

first show how unitarity of the elastic scattering process ALAL → ALAL is assured

when the mass of A is generated by Higgs mechanism. Next we will consider the

scattering process in the non-Abelian topologically massive model in 3+1 dimension

based on the work in [90].

The polarization vector of the longitudinal mode of a massive gauge boson is given

by

εµL ≡
1

m
(P,En̂), (2.1)

where P is the magnitude of the three-momentum vector, E is the energy and n̂ is

the direction of the propagation of the mode. In the high energy limit E � m, we

can expand εL in inverse powers of energy as

εµL ≈
pµ

m
+ vµ, (2.2)

where pµ ≡ (E,P n̂) is the four-momentum vector and vµ ≈
(
− m

2E
, m

2E
n̂
)
. We know

that the F µν
a F a

µν term in the non-Abelian Lagrangian density contains the couplings

AAA and AAAA. Using them, we get the Feynman diagrams for the 2→ 2 tree level

scattering, shown in Fig. 2.1. The Yang-Mills Lagrangian density is

LYM = − 1

2
{(∂µAνa − ∂νAµa)∂µA

a
ν + gfbcaA

µ
bA

ν
c (∂

µAνa − ∂νAµa)}

− 1

4
g2fbcafb′c′aA

µ
bA

ν
cA

b′

µA
c′

ν . (2.3)

The AAA coupling contains the derivative of gauge fields, so the corresponding vertex

rule contains momenta of the gauge fields. Using eqn.(2.1), we get the total power of
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Figure 2.1 (a) t-channel, (b) u-channel, (c) s -channel and (d)quartic inter-

action.

the momentum of the external legs of Feynman diagrams, shown in Fig. 2.1a−2.1d.

Each gauge boson in the legs of Feynman diagrams has the longitudinal polarization,

given in eqn.(2.2). So multiplication of the four polarization vectors εLεLεLεL provides

the term: pppp, pppv, ppvv, pvvv, vvvv. Now we consider t, u and s channels where

the contributions from two AAA vertices are present. The vertex rules for the AAA

coupling, shown in Fig. 2.2a, is

Figure 2.2 (a)AAA vertex; (b)AAAA vertex.

V abc
µνλ = −gfabc [(p− q)λgµν + (q − r)µgνλ + (r − p)νgλµ] , (2.4)

which contains the incoming four momentum assigned to external boson legs. So the

two AAA vertices in the t, u and s channels in Fig. 2.1 contribute O(p2) at large
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p. But due to the presence of the propagator of gauge field behaving as O(p−2), the

resultant contribution from the vertices and the propagator is O(p0). The vertex rule

for the quartic coupling AAAA, shown in Fig.2.2b, is

V abcd
µνλρ = − ig2[fabefcde (gµλgνρ − gµρgνλ)− facefbde (gµρgλν − gµνgλρ)

+ fadefbce (gµνgρλ − gµλgρν)], (2.5)

which does not contain any momentum of the external legs. Thus for all diagrams

in Fig. 2.1 the vertices do not contribute any power of momentum. Consequently

it becomes sufficient to consider the contributions from the polarization vectors at

external legs of the diagrams in Fig. 2.1 in counting the power of energy. Since each

leg goes as p, we can generally say that the amplitude M of each channel of the

scattering process has the dependence on the energy as [87–89,92]

M = aE4 + bE2 + C + O(E−n), n = 2, 4, . . . (2.6)

where a, b and C are functions of the scattering angle. We need to check if the

total amplitude of this form violates unitarity of the S-matrix. This is based on the

following argument.

Unitarity of the S-matrix in a tree level scattering involving a total of n particles

requires the corresponding amplitude to vary with the energy of the process in the

centre of momentum frame as [94,95]

M∼ E4−n, (2.7)

whereM is the amplitude of the scattering process. In the 2→ 2 scattering process,

the total number of particles involved is n = (2+2) = 4. Hence according to eqn.(2.7),

M∼ E0. (2.8)

But we can now see from eqn.(2.6) that the amplitude of each channel M violates

the condition in eqn.(2.8). Now we are going to see explicitly if their sum violates
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unitarity. We will consider the scattering AaAb → AcAd in SU(N) gauge theory. The

amplitudes of the t, u and s channels are1,

Mt ≈ g2facefbde

[
P 4

m4
(3 + c)(1− c) +

P 2

2m2
(9 + 7c− 4c2)

]
, (2.9)

Mu ≈ g2fadefbce

[
P 4

m4
(3− c)(1 + c) +

P 2

2m2
(9− 7c− 4c2)

]
, (2.10)

Ms ≈ − g2fabefcde

[
4P 4

m4
+

9P 2

m2
+ 9

]
c, (2.11)

where c = cos θ, θ is the scattering angle in the centre of momentum frame. The

amplitude of the quartic diagram, shown in Fig. 2.1d, is

Mq ≈ −

[
g2facefbde

{
P 2

m2
(3 + c)(1− c) + (1− c)(1 + c)

}(
P 2

m2
+ 1

)
+ g2fadefbce

{
P 2

m2
(3− c)(1 + c) + (1 + c)(1− c)

}(
P 2

m2
+ 1

)
− g2fabefcde

4P 2c

m2

(
P 2

m2
+ 1

)]
. (2.12)

Thus the sum of the scattering amplitudes of t, u and s-channels and quartic inter-

action is

Mabcd
T ≈

[
g2facefbde

P 2

2m2
(1 + 11c) + g2fadefbce

P 2

2m2
(1− 11c)− g2fabefcde

5P 2

m2
c

]
.

(2.13)

We will useMabcd
T to find scattering amplitudes of various 2→ 2 scattering processes

among gauge bosons in SU(2) gauge theory.

Instead of taking SU(N), we consider SU(2) gauge theory for simplicity. The

structure constants for the SU(2) group are fabc = εabc. Taking the contraction rule

of the structure constants for εabc

εabeεcde = (δacδbd − δadδbc), (2.14)
1See appendix A for the derivation of the amplitudes
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we get the total amplitude at the leading order of energy in the form

Mabcd =
g2

4m2
(s δabδcd + u δacδbd + t δadδbc) , (2.15)

where

s = 4E2, t = −2P 2(1− c), u = −2P 2(1 + c), (2.16)

for this elastic scattering at high energy. This amplitude is same as that of the pion-

pion scattering πaπb → πcπd, which is expressed by a single function of Mandelstam

variablesM(s, t, u) at low energy [91–93] as

Mπaπb→πcπd
T = (M(s, t, u) δabδcd +M(u, t, s)δacδbd +M(t, s, u) δadδbc) ,

(2.17)

where,

M(s, t, u) =
g2s

4m2
, M(u, t, s) =

g2u

4m2
, M(t, s, u) =

g2t

4m2
. (2.18)

The functionM(s, t, u),M(u, t, s) andM(t, s, u) are symmetric under the exchange

of last two arguments given in the parenthesis. For example

M(s, t, u) =M(s, u, t). (2.19)

The total amplitude in eqn.(2.15) is clearly increasing with the square of energy, E2

at high energy [87–89,92]. Hence it violates unitarity according to the condition given

in eqn.(2.8).

Before we discuss the solution of this problem of unitarity, let us first see how the

amplitudes of different elastic scattering processes are connected with each other. For

this purpose, we consider a conventional representation of gauge fields:

A±µ =
(A1 ∓ iA2)µ√

2
=

(δ1
a ∓ iδ2

a)A
a
µ√

2
= ς±a A

a
µ, (2.20)
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where we have written

ς±a =
(δ1
a ∓ iδ2

a)√
2

. (2.21)

The three massive gauge bosons A± and A3 may be treated as an exact triplet under

the unbroken global SU(2) symmetry, so that all elastic 2 → 2 scattering processes

which are possible among these triplet states conserve the associated isospin quantum

number I. We will remove the subscript L. The scattering amplitudes of all 2 → 2

scattering processes among the triplet states, |A±〉 and |A3〉, can now be related to

each other because of the conservation of SU(2) isospin ~I. The conservation of isospin

~I implies that the scattering matrix S must commute with the isospin operator:

[S, ~I] = 0⇒ [S, I±] = 0, [S, I3] = 0, (2.22)

with the ladder operator I± built up from the first two components of ~I as usual

I± =
I1 ± iI2√

2
. (2.23)

The two-particle state is designated as |I1, I2;M1M2〉, where I1 and I2 are the isospins

of the particles andM1 andM2 are their components along I3 axis in the isospin space.

For example,

|A±A±〉 ≡ |1, 1;±1,±1〉 , |A3A3〉 ≡ |1, 1; 0, 0〉 , |A±, A3〉 ≡ |1, 1;±1, 0〉 , etc. (2.24)

Generally the S matrix element can be written as

Sfi = δfi + Tfi. (2.25)

But we will drop the first term δfi which signifies no scattering. It is irrelevant to our

discussion given below. Thus for our purpose

Sfi = Tfi (2.26)
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The amplitude of the process A−A− → A−A− is obtained from eqn.(2.13) using

lowering operator and the commutation relation in eqn.(2.22)

M(A−A− → A−A−) =
〈
A−A−

∣∣S ∣∣A−A−〉
=

1√
2

〈
A−A−

∣∣SI− ∣∣A−A3
〉

=
1√
2
〈A−A−|I−S|A−A3〉

= 〈A−A3|S|A−A3〉+ 〈A3A−|S|A−A3〉 . (2.27)

Here we have used that

I− |A−A3〉 =
√

2 |A−A−〉 ,
〈
A−A−

∣∣ I− =
√

2
(〈
A−A3

∣∣+ 〈A3A−|
)
. (2.28)

The amplitude iM(A3A3 → A3A3) is derived using the action of the weak isospin

operator I+ on the state |A−A3〉

I+ |A−A3〉 =
√

2
(
|A3A3〉+ |A−A3〉

)
, (2.29)

in the matrix element 〈A3A3|S|A3A3〉 :

〈A3A3|S|A3A3〉 =
1√
2
〈A3A3|SI+|A−A3〉 − 〈A3A3|S|A−A+〉

= 〈A−A3|S|A−A3〉+ 〈A3A−|S|A−A3〉 − 〈A−A+|S|A3A3〉 .

(2.30)

Left hand side of the eqn.(2.30) is zero at tree level. Using eqn.(2.27), we find from

eqn.(2.30) that

〈A3A3|S|A3A3〉 =
〈
A−A−

∣∣S ∣∣A−A−〉− 〈A−A+|S|A3A3〉 . (2.31)

Here we have used the time reversal or CP symmetry so that 〈A3A3|S|A−A+〉 =

〈A−A+|S|A3A3〉, since under the time reversal symmetry of a scattering process, the

role of the initial and final states are interchanged.
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So we have seen from the relation in eqn.(2.30), that the amplitudes of various

scattering are related to each other. This relation holds at every order of quantum

correction in a renormalizable gauge theory. At tree level 〈A3A3|S|A3A3〉 = 0. So we

can write from eqn.(2.31) that at tree level

〈
A−A−

∣∣S ∣∣A−A−〉 = 〈A−A+|S|A3A3〉 . (2.32)

We can find the amplitude of A−A− → A−A− at tree level from eqn.(2.13) using

eqn.(2.27) and eqn.(2.21) as

M(A−A− → A−A−) = M(A−A3 → A−A3) +M(A3A− → A−A3)

= (ς−a δ
3
b ς

+
c δ

3
d + δ3

aς
−
b ς

+
c δ

3
d)Mabcd

T . (2.33)

HereMabcd
T is given in eqn.(2.13) and we use δ’s and ς’s in the above equation taking

all the momenta at the two vertices to be incoming. Using eqn.(2.21) and eqn.(2.18),

we get from the above equation

M(A−A− → A−A−) = (M(t, s, u) +M(u, s, t)) . (2.34)

In a similar way, we can find the amplitude of the scattering process A+A− → A3A3

as

M(A+A− → A3A3) = ς+
a ς
−
b δ

3
cδ

3
dMabcd

T =M(s, t, u). (2.35)

We also calculate

M(A−A+ → A3A3) = ς−a ς
+
b δ

3
cδ

3
dMabcd

T (2.36)

= −M(u, s, t). (2.37)

Since in the high energy limit (s � 4m2) s + t ≈ −u, we can write amplitude in

eqn.(2.37) using eqn.(2.18)

M(A−A+ → A3A3) =M(s, t, u) +M(t, s, u). (2.38)
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Hence we can rewrite the eqn.(2.30) using eqn.(2.34) and eqn.(2.37)

M(A3A3 → A3A3) = M(s, t, u) +M(t, s, u) +M(u, s, t). (2.39)

We can also find at tree level

M(A+A− → A+A−) = ς+
a ς
−
b ς

+
c ς
−
dM

abcd
T = −M(u, s, t), (2.40)

which can be written as a sum of two amplitudes at high energy as

−M(u, t, s) =M(s, t, u) +M(t, s, u), (2.41)

according to the eqn.(2.18), because in the high energy limit we have −u ≈ s+ t. We

can also get the amplitude of the scattering process A−A3 → A−A3

M(A−A3 → A−A3) = ς−a δ
3
b ς
−
c δ

3
dMabcd

T =M(t, s, u). (2.42)

So we have

M(A+A− → A3A3) = M(s, t, u), (2.43)

M(A+A− → A+A−) = M(s, t, u) +M(t, s, u), (2.44)

M(A3A3 → A3A3) = M(s, t, u) +M(t, s, u) +M(u, s, t). (2.45)

It is now straightforward to rewrite these results for the isospin product states in the

basis of irreducible states of total isospin. We use the Clebsch-Gordan coefficients

for decomposition 3 ⊗ 3 = 5 ⊕ 3 ⊕ 1 [100] to get the reduced amplitudes MI=0,1,2

corresponding to the different isospin channels2 in SU(2) gauge theory which are

possible in principle. They are at leading order in the high energy limit

M0 = 3M(s, t, u) +M(t, s, u) +M(u, s, t), (2.46)

M1 = M(t, s, u)−M(u, s, t), (2.47)

M2 = M(t, s, u) +M(u, s, t). (2.48)
2See Appendix A for the calculations.
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Using the expression ofM(s, t, u) we then have in the high energy limit

M0 =
g2s

2m2
, (2.49)

M1 =
g2(t− u)

4m2
, (2.50)

M2 = − g2s

4m2
. (2.51)

ExpandingMI in partial waves we can write

MJ
I = 32π

∫ ∑
J

(2J + 1)aJI (s)PJ(cos θ), (2.52)

where Pl(x) is Legendre polynomial of first kind. Using the orthonormality condition

of the Legendre polynomial we have

aJI =
1

2 · 32π

∫ 1

−1

d(cos θ)PJ(cos θ)MI . (2.53)

The partial wave amplitude for I = 0, J = 0 mode is

a0
0 =

1

2 · 32π

∫ 1

−1

d(cos θ)P0(cos θ)M0. (2.54)

The condition for unitarity is Re|a0
0| ≤ 1

2
. Hence we find the maximum limit of

energy scale up to which unitarity is valid in the I = 0, J = 0 channel

s ≤ 32πm2

g2
=

4
√

2π

GF

, (2.55)

where GF is Fermi coupling constant in the electroweak sector. Here we have used

the relation

GF√
2

=
g2

8m2
. (2.56)

If we take GF ≈ 1.66 × 10−5 GeV−2 and the mass of the gauge boson m ≈ 80 GeV,

as for weak interactions, then we have from eqn.(2.55) that

s ≤ 1.071TeV. (2.57)
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This means that the energy for the scattering process must not exceed the above

limit, but the total amplitude grows with E2. For weak interactions this growth of

the amplitude has to be removed before the TeV scale. This bad behaviour of the

scattering amplitude was studied by the J. S. Bell [96] and C. H. Llewellyn Smith [97].

They showed how this behaviour can be removed if spontaneous breaking of global

symmetry is included or new interactions with scalar fields are considered. We know

that spontaneous breaking of symmetry is required for the Higgs mechanism [102,103]

in electroweak theory. Now we see how the interaction with the Higgs particle saves

the unitarity of AaAb → AcAd process. If we consider the Higgs mechanism, then we

need to include the trilinear coupling among Higgs and massive gauge fields:

Lint =
g

2
mhAµaA

a
µ, (2.58)

where m is the mass of the gauge boson and h is the Higgs particle. There is also

a quartic coupling hhAA but this does not take part in the AaAb → AcAd elastic

scattering at tree level. The tree level diagrams for the process AaAb → AcAd due

to the interaction among Higgs and gauge bosons are shown in Fig. 2.3. So if we

calculate the amplitude of the Higgs-mediated channels and add them up, we find the

total amplitude in leading order3

Mh =
g2

4m2
(s δabδcd + t δacδbd + u δadδbc) . (2.59)

In order to get the total amplitude of the tree level scattering process at leading

order of energy, we have to add eqn.(2.15) and eqn.(2.59), which yields

MT +Mh = − g2

4m2
(s δabδcd + t δacδbd + u δadδbc)

+
g2

4m2
(s δabδcd + t δacδbd + u δadδbc) = 0. (2.60)

3See the details of the calculation in appendix A.
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Figure 2.3 Higgs mediated (a) s-channel, (b) t-channel, (c)u-channel of

AaAb → AcAd scattering ; dotted line represents the propagator of Higgs

particle

The next to leading order term, which survives, does not depend on energy, being

O(E0). Thus the unitarity of the S-matrix is assured.

Now we consider the non-Abelian topologically massive model, given in eqn.(1.83).

The model is taken in the place of Higgs mechanism. Construction of the tree dia-

grams require two-point coupling AB, various trilinear couplings: AAA, AAB, ABB

and quartic couplings: AAAA and AABB. Since the auxiliary fields: Cµ, θ and n

do not enter in any tree level diagrams of AaAb → AcAd scattering process, we do

not consider them. The couplings ωω̄A, ω̄µ∂νBµνω are also irrelevant to our analysis

because we consider only tree level process. We consider only the part of the full

Lagrangian density which is relevant in the computation of Feynman amplitude of

the tree level scattering process. So we only consider

L = − 1

4
F µν
a F a

µν +
1

12
Hµνλ
a Ha

µνλ +
m

4
εµνρλBa

µνF
a
ρλ

− 1

2ξ
(∂µA

µ
a)2 +

1

2η
(∂µB

µν
a )2. (2.61)
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Here Ha
µνλ =

(
D[µBνλ]

)a, where Dµ is the gauge covariant derivative. The first term

F µν
a F a

µν in the Lagrangian density in eqn.(2.61) provides the 3-point and quartic

couplings between the gauge fields. The second term leads to ABB and AABB

couplings, whereas the B ∧ F term provides a two point derivative coupling between

B and A and a three-point coupling, AAB. The vertex rules for AB and AAB

couplings are

iV ab
µν,λ = −mεµνλρkρδab, (2.62)

iV abc
µ,ν,λρ = −igmf bcaεµνλρ , (2.63)

for the two point AB vertex and the three-point AAB vertex, respectively. The cor-

Figure 2.4 Vertices from the B ∧ F term

responding vertices are shown in Fig. 2.4 where the momenta are all directed towards

the vertex. In order to use these vertices in a diagram, we need propagators of the

fields, which come from kinetic terms, −1
4
F a
µνF

aµν for the A bosons, and 1
12
Ha
µνλH

aµνλ

for the B field. We have already found the complete propagator of the vector field(

at the tree level) in the previous chapter, which is

iDµν = −i

[
gµν − (1− ξ)kµkν

k2

(k2 −m2)
− ξm2 kµkν

k4(k2 −m2)

]
δab. (2.64)
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Similarly for the tensor field we have

iDab
µν,ρλ = i

[
gµ[ρgλ]ν + (1− η)

k[µk[λgρ]ν]
k2

k2 −m2
+ ηm2 k[µk[λgρ]ν]

k4(k2 −m2)

]
δab. (2.65)

These are shown diagrammatically in Fig. 2.5. These propagators show a good high

energy behaviour, varying as ∼ k−2 as k → ∞ which shows the power-counting

renormalizability of the model. The terms ξm2 kµkν
k4(k2 −m2)

and ηm2
k[µk[λgρ]ν]

k4(k2 −m2)
in

the propagators in eqn.(2.64) and eqn.(2.65) behave as ∼ k−4 at high energy. So they

do not contribute in the divergent part of the tree-level amplitude and we can safely

ignore them. The particle interpretation of quantum fields comes from the quadratic

Figure 2.5 (a) Propagator of gluon field; (b) propagator of B field.

part of the Lagrangian. However, the kinetic term for the B field contains non-linear

Figure 2.6 Vertices from the HµνλH
µνλ term

interactions among the B and the A fields. From Ha
µνλH

µνλ
a ∼ DµBνλD

[µB
νλ]
a , we get

the couplings ABB and ABBB. The ABB coupling contains derivatives of B fields

but AABB does not have them. So the vertex rule of ABB contains the momentum
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of B field. The diagrams corresponding to the vertex rules for those couplings are

shown in Fig. 2.6. The vertex rules are respectively

iV abc
µ,λρ,στ = gfabc

[
(p− q)µgλ[σgτ ]ρ + p[σgτ ][λgρ]µ − q[λgρ][σgτ ]µ

]
, (2.66)

iV abcd
µ,ν,λρ,στ = ig2

[
facef bde

(
gµνgλ[σgτ ]ρ + gµ[σgτ ][λgρ]ν

)
+ fadef bce

(
gµνgλ[σgτ ]ρ + gµ[λgρ][σgτ ]ν

)]
.

(2.67)

Considering the linear and non-linear interactions among A and B fields, we find

several new diagrams corresponding to A+A− → A+A− scattering at the tree level

in SU(2) gauge theory. We have grouped the diagrams into Fig. 2.7, Fig. 2.8 and

Fig. 2.10, according to the number of internal B propagators. The amplitudes for all

of these diagrams go as O(P 2).

In Fig. 2.7, diagrams (a) and (b) appear only once, but diagrams (c) and (d) have

twins, obtained by exchanging the internal B and A lines. Similarly, the B line can

be on any of the external legs in each of diagrams (e) and (f), leading to a multiplicity

of 4. We have calculated the amplitudes corresponding to these diagrams using the

vertex rules and propagators given before.

The amplitudes for the diagrams in Fig. 2.7, including their multiplicities, are

M2.7a +M2.7b = −3g2P 2

2m2
(1 + c) + O(P 0) (2.68)

2 (M2.7c +M2.7d) =
3g2P 2

m2
(1 + c) + O(P 0) (2.69)

4 (M2.7e +M2.7f ) = −2g2P 2

m2
(1 + c) + O(P 0) , (2.70)

Each of the diagrams in Fig. 2.7 contains only one propagator of the B field. We

consider the couplings AAA, AB and AAB here . Now we are going to consider the

diagrams having the couplings in the diagrams in Fig. 2.8 where we have used AAA,

AB and ABB and AABB couplings.
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Figure 2.7 Scattering diagrams with P 2 behavior: I

Now consider the diagrams in Fig. 2.8c and Fig. 2.8d. We can place the AB

coupling in any one of the legs. Due to this placement of AB, we get different

Feynman diagrams but with an internal B-propagator joining two ABB vertices. We

find that each of them provides the same amplitude. Hence we get a multiplicity

of 4 for these diagrams. Similar reason is behind the appearance of the multiplicity

factor 4 for the amplitudes in eqn.(2.72)-(2.73) due to the four placements of the AB

couplings on the external legs in the Fig. 2.8c-2.8f.

But in the case of Fig. 2.8a, if we place the AB coupling at different legs as shown in
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Figure 2.8 Scattering diagrams with P 2 behavior: II

Fig. 2.9, then we find their contribution is O(P 0). There are other diagrams which also

have two propagators of B field. These are constructed using the quartic couplings

AABB and AB as shown in Fig. 2.8g-2.8i.Including multiplicities, the amplitudes of
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Figure 2.9 Scattering diagrams with P 0 behaviour.

the diagrams in Fig.2.8 are

2 (M2.8a +M2.8b) =
2g2P 2

m2
(1 + c) + O(P 0) (2.71)

4 (M2.8c +M2.8d) =
4g2P 2

m2
(1 + c) + O(P 0) (2.72)

4 (M2.8e +M2.8f ) = −4g2P 2

m2
(1 + c) + O(P 0) (2.73)

2 (M2.8g +M2.8h +M2.8i) =
2g2P 2

m2
(1 + 3c+ 2c2) + O(P 0) . (2.74)

We have shown detailed calculations of amplitudes of the diagrams in Fig. 2.7b,

Fig. 2.7e-2.7f and Fig. 2.8e-2.8f in appendix B. There are remaining diagrams which

contains three propagators of B field, shown in Fig. 2.10. There are two of each

diagram, corresponding to exchanging the B line between the incoming lines and

simultaneously between the outgoing lines. The amplitudes for these are

2 (M2.10a +M2.10b +M2.10c +M2.10d) = −4g2P 2

m2
(1 + 2c+ c2) + O(P 0) . (2.75)

Adding the amplitudes of the diagrams in Fig. 2.7, Fig. 2.8 and Fig. 2.10, we get

MT = −g
2P 2

2m2
(1 + c) + O(P 0) , (2.76)

There are other diagrams containing four internal propagators of the Kalb-Ramond

field. These are shown in Fig.2.11. They are irrelevant to our concern because they
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Figure 2.10 Scattering diagrams with P 2 behaviour: III

contribute O(P 0) at the leading order. We have found the scattering amplitude of

A+
LA
−
L → A+

LA
−
L in eqn.(2.40) based only on the interactions in Yang-Mills Lagrangian

density. The amplitude of the diagrams in Fig. 2.12 is found to be

MG =
g2P 2

2m2
(1 + c) + O(P 0). (2.77)

If we add to it the total amplitude of the B-mediated tree level scattering process

A+A− → A+A−, given in eqn.(2.76), we find

MT +MG = −g
2P 2

2m2
(1 + c) +

g2P 2

2m2
(1 + c) + O(P 0) = O(P 0). (2.78)

Hence cancellation of the P 2 divergence occurs exactly and unitarity survives. The

tree level amplitude for A+
LA
−
L → A+

LA
−
L elastic scattering remains finite as P →∞ ,

and unitarity is not violated. We note that there are tree level diagrams other than the
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Figure 2.11 Scattering diagrams with P 0 behaviour.

Figure 2.12 Scattering diagrams of A+
LA
−
L → A+

LA
−
L from F µνFµν term.

diagrams shown in Fig. 2.11 in this model for the A+
LA
−
L → A+

LA
−
L elastic scattering

process, but all those are of the order P 0, so do not affect our argument.

Now we are going to check the unitarity of the tree level scattering process

A+
LA

+
L → A+

LA
+
L . Considering the AAA and AAAA couplings in F µν

a F a
µν , we get

the diagrams, shown in Fig. 2.13. The amplitude of the scattering process A+A+ →
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Figure 2.13 (a) t-channel; (b) u channel; (c) quartic interaction of A+A+ →

A+A+ process.

A+A+ can be obtained in the high energy limit using eqn.(2.13) and eqn.(2.21)

M2.13 = M2.13a +M2.13b +M2.13c

= ς+
a ς

+
b ς
−
c ς
−
dM

abcd
T

= − g2s

4m2
. (2.79)

Now including the couplings among the A and B fields, we get the diagrams with a

single B propagator shown in the Fig. 2.14 The total amplitude of the t channels is

Mt
2.14 = (M2.14a + 2M2.14b + 4M2.14c) =

g2P 2

2m2
(1 + 11c) + O(P 0). (2.80)

There are u-channel diagrams corresponding to the t channel diagrams of Fig. 2.14

which I do not draw here. We can easily get the amplitude of the u-channel diagrams

from the corresponding t channel amplitude exchanging the legs of the Feynman di-

agram carrying the momentum p′ and q′. As a consequence, if a term in a amplitude

of the t-channel depends on c, we can get the amplitude of the u channel then by re-

placing c by −c in the t-channel amplitude. Hence the amplitude from the u channels

corresponding to the t-channels in Fig. 2.14

Mu
2.14 =

g2P 2

2m2
(1− 11c) + O(P 0). (2.81)



2.1 Tree level calculation 61

Figure 2.14 (a)t-channels with single B propagator.

So the total amplitude of the t and u channels corresponding to Fig. 2.14 is

M2.14 =Mt
2.14 +Mu

2.14 =
g2P 2

m2
+ O(P 0). (2.82)

Next, we come to the t-channel diagrams with two propagators of the B field are

shown in the Fig. 2.15. The total amplitude for the diagrams in Fig. 2.15 is

Figure 2.15 t-channels of A+A+ → A+A+ process with two B propagators.

Mt
2.15 =

(
2Mt

2.15a + 4Mt
2.15b + 4Mt

2.15c

)
= −2g2P 2

m2
(1 + 3c) + O(P 0). (2.83)
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Using the same arguments as in the previous case, we get the total amplitude for the

corresponding u channel diagrams as

Mu
2.15 = −2g2P 2

m2
(1− 3c) + O(P 0). (2.84)

So the total amplitude of t and u channels corresponding to Fig. 2.15 becomes

M2.15 = −4g2P 2

m2
+ O(P 0). (2.85)

Now we are considering the ‘contact’ diagrams which contains two B propagators.

They are shown in Fig. 2.16. The sum of their amplitudes is

Figure 2.16 Quartic interaction of the process A+A+ → A+A+ with two B

propagators.

M2.16 = 2 (M2.16a +M2.16b +M2.16c) = −4g2P 2

m2
(1 + 2c2) + O(P 0). (2.86)

Each of the remaining relevant diagrams contains three propagators of B field. These

are shown in Fig. 2.17. The total amplitude of the t and u channels corresponding to

the diagrams, shown in Fig. 2.17, is

M2.17 =
8g2P 2

m2
(1 + c2) + O(P 0) (2.87)



2.1 Tree level calculation 63

Figure 2.17 (a)Diagrams contains three B propagators.

If we add eqn.(2.82), eqn.(2.85), eqn.(2.86) and eqn.(2.87), we get

M = M2.14 +M2.15 +M2.16 +M2.17

=
g2P 2

m2
− 4g2P 2

m2
− 4g2P 2

m2
(1 + 2c2) +

8g2P 2

m2
(1 + c2) + O(P 0)

=
g2P 2

m2
+ +O(P 0) ≈ g2s

4m2
+ O(E0) (2.88)

The total amplitude in eqn.(2.88) comes from the interactions among A and B field

in the topologically massive model. So the sum of the amplitudes in eqn.(2.79) and

eqn.(2.88) is

MA+A+→A+A+

= − g2s

4m2
+

g2s

4m2
+ O(E0) = O(E0). (2.89)

Hence we can see that the divergent part of the scattering amplitude is cancelled

when we consider the non-Abelian topologically massive model. In similar way, we

can find the unitarty of A−A− → A−A− scattering. Considering eqn.(2.32) we see

that

M(A−A− → A−A−) =M(A−A+ → A3A3) (2.90)
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holds in the high energy limit. So we can easily say from the above relation that the

unitarity of the process A−A+ → A3A3 is assured. We conclude that the topologi-

cal mass generation mechanism for 3 + 1 dimensional SU(2) gauge theory with the

Lagrangian as given in eqn.(2.61) does not violate tree level unitarity of scattering

amplitude of longitudinal gauge bosons. Various couplings among the B and A fields

in HµνλaHa
µνλ and B ∧ F terms plays important roles in obtaining the unitarity.
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Appendix A

Derivation of the isospin amplitudes

The third component of weak-isospin I3 of A−, A3 and A+ are respectively −1, 0

and +1. So the two particle product state |I1I2,m1m2〉 can be decomposed into total

isospin states |I,M〉 using Clebsch-Gordan coefficients, i.e.,

|I1I2,m1m2〉 =
∑
IM

|I,M〉 〈I,M |I1, I2;m1,m2〉 , (A.1)

wherem1 runs from −I1 to I1 andm2 from −I2 to I2. The Clebsch-Gordan coefficients

〈IM |I1, I2;m1,m2〉 are non-zero only if m1 +m2 = M . For example

〈
A+A−

∣∣ ≡ 〈1, 1; 1,−1| = −

(√
1

6
〈2, 0|+

√
1

2
〈1, 0|+

√
1

3
〈0, 0|

)
, (A.2)

∣∣A3A3
〉
≡ |1, 1; 0, 0〉 =

√
2

3
|2, 0〉 −

√
1

3
|0, 0〉 . (A.3)

Hence using the orthogonality of the state vector we have

〈
A+A−

∣∣S ∣∣A3A3
〉

= −

(√
1

6
〈2, 0|+

√
1

2
〈1, 0|+

√
1

3
〈0, 0|

)
S

(√
2

3
|2, 0〉 −

√
1

3
|0, 0〉

)
=

1

3
(M0 −M2) , (A.4)
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where the we have defined

〈0, 0|S |0, 0〉 =M0, (A.5)

〈1,M |S |1,M〉 =M1, (A.6)

〈2,M |S |2,M〉 =M2. (A.7)

The S-matrix is Poincare invariant, therefore it is invariant under SO(3) group. Then

we can say using Wigner-Eckart theorem that the matrix elements in eqn.(A.5)-

eqn.(A.7) are independent of M [98–101]. In a similar way we get

〈
A−A−

∣∣S ∣∣A−A−〉 =
〈
A+A+

∣∣S ∣∣A+A+
〉

=M2 (A.8)

and

〈
A−A3

∣∣S ∣∣A−A3
〉

=

(√
1

2
〈2,−1|+

√
1

2
〈1,−1|

)
S

(√
1

2
|2,−1〉+

√
1

2
|1,−1〉

)
=

1

2
(M1 +M2) (A.9)

and

〈
A+A3

∣∣S ∣∣A+A3
〉

=

(√
1

2
〈2, 1|+

√
1

2
〈1, 1|

)
S

(√
1

2
|2, 1〉+

√
1

2
|1, 1〉

)
=

1

2
(M1 +M2) . (A.10)

Using eqn.(2.34), eqn.(2.35) and eqn.(2.32), we can express eqn.(A.4), eqn.(A.8)

and eqn.(A.10) as

M(t, s, u) +M(u, s, t) = M2 (A.11)

M(s, t, u) =
1

3
(M0 −M2) (A.12)

M(t, s, u) =
1

2
(M1 +M2) . (A.13)
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Solving eqn.(A.11)-(A.13), we have

M0 = 3M(s, t, u) +M(t, s, u) +M(u, s, t) (A.14)

M1 = M(t, s, u) +M(u, s, t) (A.15)

M2 = M(t, s, u) +M(u, s, t) (A.16)

as given in the eqn.(2.46)-(2.48).

A.1 Kinematics

In the centre of momentum frame for the elastic scattering process AaAb → AcAd, the

gauge bosons Aa and Ab are moving along z-axis as shown in Fig. A.1. The diagram

Figure A.1 Kinemetical diagram in the centre of momentum frame.

is in the y-z plane. The four momenta of the gauge bosons Aa and Ab in initial state

are respectively

pµ ≡ (E,P ẑ) qµ ≡ (E,−P ẑ). (A.17)
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where P is magnitude of the three momentum. The four momenta of the gauge

bosons in the final states are

p′µ ≡ (E,P n̂) q′µ ≡ (E,−Pn̂). (A.18)

Here n̂ is the unit vector along the direction of the scattered gauge boson and it makes

an angle θ with the z-axis i.e.

ẑ.n̂ = cos θ, (A.19)

which will be abbreviated as c in our analysis of the scattering process. The longitu-

dinal polarization vectors of the initial states are

εµp ≡
1

m
(P,Eẑ), εµq ≡

1

m
(P,−Eẑ), (A.20)

which satisfy pµεµp = 0 and qµε
µ
q = 0. The longitudinal polarization vectors for the

final states are

εµp′ ≡
1

m
(P,En̂), εµq′ ≡

1

m
(P,−En̂), (A.21)

satisfying p′µε
µ
p′ = 0 and q′µε

µ
q′ = 0. We use Mandelstam variables s, t and u in terms

of the four momenta as

s = (p+ q)2, t = (p− p′)2, u = (p− q′)2, (A.22)

which is in the high energy limit i.e. E � m, becomes

s ≈ 4E2, t ≈ −2P 2(1− c), u ≈ −2P 2(1 + c). (A.23)

A.2 Amplitude of Aa
LA

b
L → Ac

LA
d
L scattering.

Here we show the calculation of the amplitude for the t, u and s channels and quartic

interaction of the scattering process of longitudinally polarized gauge bosons AaAb →
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AcAd where they are taken to be massive in SU(N) gauge theory. The result is used

in eqn.(2.13). The t-channel diagram of the scattering process is shown in Fig. 2.1a

and also in Fig. A.2. First we consider the non-linear interactions among massive

gauge bosons in pure Yang-Mills Lagrangian density and show how the scattering

amplitude violates unitarity. We calculate in the Feynman-’t Hooft gauge for the

Figure A.2 t-channel for AaAb → AcAd scattering.

propagator of the gauge boson A. The Feynman amplitude is given by

iMt = εpµε
p′

ν V
µνλ
aec iD

t
λλ′V

αβλ′

bed εqαε
q′

β , (A.24)

where the ε are the polarizations of the external gauge bosons, and

iDt
λλ′ = − igλλ′

(p− p′)2 −m2
= − igλλ′

t−m2
, (A.25)

V µνλ
aec = −gface [(p+ p′)λgµν − (2p′ − p)µgνλ − (2p− p′)νgµλ] . (A.26)

The V µνλ
aec is obtained from eqn.(2.4). Applying the condition of the longitudinal

polarization vector pµεpµ = 0, I find after some algebraic manipulations

Mt = g2 facefbde
(t−m2)

[
(p+ p′)λεp · εp′ − 2p′ · εp(εp + εp

′
)λ

]
(A.27)

×
[
(q + q′)λεq · ε′q − 2q′ · εq(εq + εq

′
)λ
]

= g2 facefbde
(t−m2)

Bt
λC

tλ, (A.28)
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where for the convenience we have defined the 4-vectors

Bt ≡
(
−2P 2E

m2
(1− c)− 2Ec,

{
−P

3

m2
(1− c)− P (2− c)

}
(ẑ + n̂)

)
, (A.29)

Ct ≡
(
−2P 2E

m2
(1− c)− 2Ec,

{
P 3

m2
(1− c) + P (2− c)

}
(ẑ + n̂)

)
. (A.30)

We have used

p′ · εp = p · εp′ = q′ · εq = q · εq′ =
PE

m
(1− c) (A.31)

and

εp · εp′ =

{
P 2

m2
(1− c)− c

}
= εq · εq′ (A.32)

from eqn.(A.17)-(A.21) to get eqn.(A.28) from eqn.(A.27). Now taking the high

energy limit P � m, we can write

1

t−m2
=

1

−2P 2(1− c)−m2
= − 1

2P 2(1− c)

[
1 +

m2

2P 2(1− c)

]−1

= − 1

2P 2(1− c)

[
1− m2

2P 2(1− c)
+ · · ·

]
.

(A.33)

Hence the Feynman amplitude becomes in the high energy limit

Mt ≈ g2facefbde

[
P 4

m4
(3 + c)(1− c) +

P 2

2m2
(9 + 7c− 4c2)

]
(A.34)

≈ −g2facefbde

[
E4

m4
(3 + c)(1− c)− E2

2m2
(3− 15c)

]
. (A.35)

Similarly we can calculate the amplitude for the u and s-channels and quartic inter-

actions shown in Fig. A.3. The amplitude of the u-channel is

Mu = g2 fadefbce
(u−m2)

[(p+ q′)λεp · εq′ − 2q′ · εp(εp + εq′)λ] (A.36)

×
[
(q + p′)λεq · εp′ − 2q · εq(εq + εp′)

λ
]

= g2 facefbde
(u−m2)

Bu
λC

uλ, (A.37)
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Figure A.3 (a) u-channel; (b) s-channel; (c) quartic interaction.

where

Bu ≡
(
−2P 2E

m2
(1 + c) + 2Ec,

{
−P

3

m2
(1 + c)− P (2 + c)

}
(ẑ − n̂)

)
, (A.38)

Cu ≡
(
−2P 2E

m2
(1 + c)− 2Ec,

{
P 3

m2
(1 + c) + P (2 + c)

}
(ẑ − n̂)

)
. (A.39)

In the high energy limit, we get the amplitude of AaAb → AcAd scattering process

in SU(N) gauge theory

Mu ≈ g2fadefbce

[
P 4

m4
(3− c)(1 + c) +

P 2

2m2
(9− 7c− 4c2)

]
(A.40)

≈ −g2fadefbce

[
E4

m4
(3− c)(1 + c)− E2

2m2
(3 + 15c)

]
. (A.41)

The amplitude of the s-channel is similarly calculated to be

Ms = −g2 fabefdce
(s−m2)

[(p− q)λεp · εq − 2q · εp(εp − εq)λ] (A.42)

×
[
(q′ + p′)λεq′ · εp′ − 2p′ · εq′(εp′ − εq′)λ

]
= g2 fabefcde

(s−m2)
Bs
λC

sλ, (A.43)
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where

Bs ≡
(

0,

(
4P 3

m2
+ 6P

)
ẑ

)
, (A.44)

Cs ≡
(

0,

(
4P 3

m2
+ 6P

)
n̂

)
. (A.45)

In the high energy limit the amplitude of the s-channel in SU(N) Yang-Mills theory

becomes

Ms ≈ −g2fabefcde

[
4P 4

m4
+

9P 2

m2
+ 9

]
c (A.46)

≈ −g2facefbde

[
4E4

m4
+
E2

m2
+ 4

]
c. (A.47)

The amplitude of the quartic coupling is calculated similarly to be

Mq ≈ −

[
g2facefbde

{
P 2

m2
(3 + c)(1− c) + (1− c)(1 + c)

}(
P 2

m2
+ 1

)
+ g2fadefbce

{
P 2

m2
(3− c)(1 + c) + (1 + c)(1− c)

}(
P 2

m2
+ 1

)
− g2fabefcde

4P 2c

m2

(
P 2

m2
+ 1

)]
(A.48)

≈ −

[
g2facefbde

{
E2

m2
(3 + c)(1− c) + 2(1− c− c2)

}
E2

m2

+ g2fadefbce

{
E2

m2
(3− c)(1 + c) + 2(1 + c− c2)

}
E2

m2

− g2fabefcde

(
4E2c

m2
− 4c

)
E2

m2

]
. (A.49)

These amplitudes in eqn.(A.34), eqn.(A.40), eqn.(A.46) and eqn.(A.48) are shown in

eqn.(2.9), eqn.(2.10), eqn.(2.11) and eqn.(2.12) respectively. We now calculate the

Feynman amplitude of the elastic scattering with the Higgs mediator in the SU(N)

gauge theory. There are three channels corresponding to s, t and u. The vertex rule

corresponding to the hAA vertex is

iVµν,ab = imδabηµν . (A.50)
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Figure A.4 Vertex rule for hAA.

Figure A.5 (a) s-channel,(b) t-channel, (c) u-channel for Higgs mediated

diagrams.

Using the vertex rule we can find the amplitude of the diagrams.

The Feynman amplitude for the s-channel in Fig. A.5c is

Mh
s = (igm)δab

1

s−m2
h

(igm)δcd(εp · εq)2

= −δabδcd
g2m2

(s−m2
h)

(
2P 2

m2
+ 1

)2

. (A.51)

In the high energy limit, it becomes

Mh
s ≈ −δabδcd

g2P 2

m2
≈ −δabδcd

g2s

4m2
. (A.52)
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The Feynman amplitude for the t-channel in Fig. A.5a is

Mh
t = (gm)δac

1

t−m2
h

(gm)δbd(εp′ · εp)2

= −δacδbd
g2m2

(t−m2
h)

(
P 2

m2
(1− c)− c

)2

. (A.53)

In the high energy limit,

Mh
t ≈ δacδbd

g2P 2

2m2 (1− c) ≈ −δacδbd g
2t

4m2 . (A.54)

The Feynman amplitude for the u-channel in Fig. A.5b is

Mh
u = (igm)δad

1

u−m2
h

(igm)δbc(εp · εq′)2

= δadδbc
g2m2

(u−m2
h)

(
P 2

m2
(1 + c) + c

)2

. (A.55)

In the high energy limit,

Mh
u ≈ δadδbc

g2P 2

2m2
(1 + c) ≈ −δadδbc

g2u

4m2
. (A.56)

Thus the total amplitude of Higgs mediated AaAb → AcAd scattering, shown in

Fig. A.5a, in the high-energy limit is

Mh
t +Mh

u +Mh
s ≈ −

g2

4m2
(s δabδcd + t δacδbd + u δadδbc) . (A.57)
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Amplitude of some B-mediated

ALAL→ ALAL scattering-channels.

Here we show some tricks which we use in the calculation of the amplitudes of B-

mediated diagrams for A+A− → A+A− and give some examples to show how the

tricks help us in the calculations. We now show explicitly how the amplitude of t-

channel Feynman diagram in the Fig. 2.7b is calculated. It is redrawn in the Fig. B.1

with the four momenta shown on the legs. The four momenta, p, q, p′ and q′ are

specified in eqn.(A.17) and eqn.(??). The Feynman amplitude for the diagram is

Figure B.1 t-channel Scattering diagrams with B-propagator
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then given by

M = εµpε
ν
p′(−igmfaceενµαβ)

1

4

igα[α′
gβ

′]β

t−m2
(−igmfebd)ερσα′β′ερqε

σ
q′ (B.1)

=
g2m2

(t−m2)
facefbde

(
εp · εqε′p · ε′q − εp · εq′εp′ · εq

)
. (B.2)

We use some tricks to find the amplitude of the Feynman diagrams containing

the AB two point function Fig. B.2a. The calculation of the t-channel diagrams in

Figure B.2 (a) Diagram corresponding to vertex tensor Aαβ; (b)diagram

corresponding to vertex vector V λ

Fig. B.1 and its corresponding s-channel diagram, shown in Fig. 2.7, are the simplest

B-mediated diagrams among all the other diagrams shown in the Fig. 2.7-Fig. 2.10.

We have already seen that except the diagrams in the Fig. 2.7a and Fig. 2.7b, all the

diagrams contain AB couplings. So we calculate the contraction of AB-vertex rule,

given in the eqn.(2.62), with the longitudinal polarization vector of the massive gauge

boson moving along the z axis. We have excluded the propagator of B field which

is shown in the Fig. B.2a by the X mark where the B-lines end. We get a ‘vertex

tensor’

Aαβ = εαβγµpγε
p
µ = mεαβ03 (B.3)
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according to eqn.(A.17) and eqn.(A.20). The calculation of the amplitudes of the

diagrams in Fig. 2.7e and Fig. 2.7f with the placement of AB coupling on different

legs, becomes easier if we use some tricks. Excluding the propagator of B field, we

contract the two point vertex rule, given in eqn.(2.62), by the longitudinal polarization

of the gauge boson along the z axis to get

V λ = εpµ(−igmfcabελµρσ)
igρ[ρ′gσ′]σ

4m2
mερ

′σ′sνqsε
q
ν

= −gfcab[qλ εp.εq − q.εp ελq ] (B.4)

= −gfcab(E,P ẑ) = −gfabcpλ. (B.5)

Similarly we can find the ‘vertex-vector’ for the diagrams in Fig. B.3 using eqn.(2.21),

Figure B.3 Diagrams for vertex vectors.

(a) V λ
B.3a = gqλ, (B.6)

(b) V λ
B.3b = −gq′λ, (B.7)

(c) V λ
B.3c = gp′λ, (B.8)

and for the diagrams in Fig. B.4
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Figure B.4 Diagrams for vertex vectors V λ
B.4a − V λ

B.4d.

(a) V λ
B.4a = g(Ec, P ẑ), (B.9)

(b) V λ
B.4b = −g(Ec,−P ẑ), (B.10)

(c) V λ
B.4c = g(Ec, P n̂), (B.11)

(d) V λ
B.4d = −g(Ec,−Pn̂). (B.12)

We can use these results to calculate the amplitude of the diagrams in the Fig. B.5.

These are diagrams shown in Fig. 2.7e and Fig. 2.7f. For the s-channel diagram, we

have

Ms = V µ
B.3a

−igµν
s−m2

Cs
ν

=
g2

s−m2

(
4P 4

m2
+ 6P 2

)
c, (B.13)
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Figure B.5 (a) s-channel and (b) t channel with one B-propagator, which

are also shown in Fig. 2.7e and Fig. 2.7f.

where Cν
s is given in eqn.(A.45). For the t-channel

Mt = V λ
B.4a

−gµν
s−m2

Cν
t

= ig(Ec, P ẑ)
−i

t−m2
g

(
−2P 2E

m2
(1− c)− 2Ec,

{
P 3

m2
(1− c) + P (2− c)

}
(ẑ + n̂)

)
=

ig

t−m2

[
P 4

m2
(1− c)(1 + 3c) + p2(2− c)(1 + 3c) + 2m2c

]
, (B.14)

where Cν
t is given in eqn.(A.30). In the high energy limit

Ms ≈
g2P 2c

m2
, Mt ≈ −

g2P 2

2m2
(1 + 3c). (B.15)

Hence the total amplitude for the diagram in Fig. B.5 is

Ms +Mt = −g
2P 2

2m2
(1 + c), (B.16)

which is used in eqn.(2.70). We also find the vertex-vectors for the diagrams shown
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Figure B.6 Diagrams for the ’vertex vectors’ containing two B propagators

in Fig. B.6 as

(a )V λ
B.6a = g(2Ec, P (ẑ + n̂)), (B.17)

(b) V λ
B.6b = −g(2Ec,−P (ẑ + n̂)), (B.18)

(c) V λ
B.6c = g(p− q)λ, (B.19)

(d) V λ
B.6d = g(p′ − q′)λ. (B.20)

We can use them to calculate the scattering amplitude of the diagrams in Fig. B.7,

which are the diagrams in Fig. 2.8a and Fig. 2.8b. The amplitude of the s-channel,

shown in Fig. B.7 is

MB.7a = V λ
B.6c

−igλρ
s−m2

Cρ
s

= (0, 2P ẑ)
1

s−m2

(
0,

(
4P 3

m2
+ 6P

)
n̂

)
= − g2

s−m2

(
8P 4

m2
+ 12P 2

)
c. (B.21)
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Figure B.7 Feynman diagrams with two B-propagators:(a) s-channel; (b)

t-channel corresponding to Fig. 2.8a and Fig. 2.8b.

The amplitude of the t-channel diagram in Fig. B.7b is

MB.7b = V λ
B.6a

−igλρ
t−m2

Cρ
t

=
−g2

t−m2

[
2P 4

m2
(1 + 3c)(1− c) + 4P 2c(1− c) + 4E2c+ 2P 2(2− c)(1 + c)

]
.

(B.22)

Thus, in the high energy limit we find

MB.7a ≈ −
2g2P 2

m2
c, MB.7b ≈

g2P 2

m2
(1 + 3c). (B.23)

Hence if we sum up the amplitudes of the s and t channels, we get in the high energy

limit

MB.7 ≈
g2P 2

m2
(1 + c), (B.24)

which is used in eqn.(2.71).



Chapter 3

β function in topologically massive

theory

In this chapter we will see the behaviour of gauge coupling constant g with the change

of the energy scale in a topologically massive gauge theory based on the work in [105].

We know that perturbative technique can be used at high energies in non-Abelian

gauge theory due to asymptotic freedom. Asymptotic freedom was shown in [16, 17]

assuming the gauge bosons to be massless. To begin with, we consider Yang-Mills

Lagrangian density, shown in eqn.(2.3). Taking the Lorenz-gauge condition, we have

to add a Lagrangian density for the ghost field to eqn.(2.3), and we get

L = −1

4
F µν · Fµν −

1

2ξ
(∂µA

µ)2 + ∂µω̄ ·Dµω, (3.1)

where ω and ω̄ are the ghost fields and Dµ is the covariant derivative. The propagator

of the ghost field is

iDab
ω̄ω(k) =

i

k2
δab, (3.2)

which is shown diagrammatically by a solid line, as in Fig. 3.1.

83
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Figure 3.1 Ghost propagator is represented by unbroken line.

Using the self couplings among gauge field and the three point coupling among

gauge field and the ghost fields, we can calculate the one-loop correction to the two-

point function of the gauge field. The one-loop diagrams are shown in Fig. 3.2. The

behaviour of the gauge coupling constant g with the energy scale µ can be expressed

by the “beta function”, which is defined as

β =
∂g

∂ lnµ
. (3.3)

In the case of SU(N) Yang-Mills theory, with the Lagrangian density given in the

Figure 3.2 One loop diagrams, contributed from (a) 3-point couplings

among gauge fields; (b)quartic couplings among gauge field; (c) 3-point in-

teraction among gauge and ghost fields.

eqn.(3.1), it is known [16,17] that

βYM = − g
3N

16π2

11

3
. (3.4)

If we consider the inclusion of matter fields (fermions and scalar) in the Lagrangian

density then the one-loop β function becomes

β(α) = −
(

11

3
N − 2

3
Nf −

1

6
Ns

)
α2. (3.5)
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Here α = g2

4π
, Nf and Ns are the number of flavours of fermion and scalar fields

respectively interacting with the gauge fields. We can see from the above eqn.(3.5)

that the β function has positive terms due to the presence of the matter fields in

the theory. The β function for Curci-Ferrari model was calculated by Boer et al at

one loop order [109] where the Yang-Mills field where the Yang-Mills gauge bosons

are Proca massive. The β function becomes the same as the β function of massless

Yang-Mills theory i.e.

β(α) = −11N

3

α2

2π
. (3.6)

We are now treating a topologically massive model, where various non-linear cou-

plings among gauge and two-forms fields are present, we are curious to see how the

β function is modified in the model. We have taken the Lagrangian density

L ′ = −1

4
F a
µνF

µν
a +

1

12
Hµνλ
a Ha

µνλ +
m

4
εµναβF a

µνB
a
αβ

+∂µω̄a∂
µωa − gfbcaAbµ∂µω̄aωc −

1

2ξ
(∂µA

µ
a)2 +

1

2η
{(DµB

µν)a}2 , (3.7)

where Bµν field is now treated like a matter field. In particular, we do not consider the

vector gauge symmetry of Bµν field. Hence the vector ghost and ghosts of the vector

ghosts fields do not take part in our calculation. Here Ha
µνλ =

(
D[µBνλ]

)a. The term

1
2η
{(DµB

µν)a}2 is added to get the propagator of B field, where η is an arbitrary

parameter. We will take ξ = 1 and η = 1 as in Feynman-’t Hooft gauge for our

calculation. The two form field is often compared to a scalar, so it necessary to check

how the interactions between gauge field A and the two form field B contribute in the

behaviour of the gauge coupling constant with the energy scale. With this purpose,

we are going to calculate the one loop correction of the gauge boson propagator. The

loop diagrams are constructed from various couplings in this model. The propagators
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of A and B fields as shown in eqn.(1.153) and eqn.(1.154), are

iDab
µν = −i

[
gµν − (1− ξ)kµkν

k2

(k2 −m2)
− ξm2 kµkν

k4(k2 −m2)

]
δab, (3.8)

iDab
µν,ρλ =

[
gµ[ρgλ]ν + (1− η)

k[µk[λgρ]ν]
k2

k2 −m2
+ ηm2 k[µk[λgρ]ν]

k4(k2 −m2)

]
δab. (3.9)

The square of the covariant derivative of theB field contains the terms g∂αBανAµB
µν ,

which contain the partial derivative of B field. On the other hand we can also have

the derivative coupling ABB from the HµνλHµνλ as we found in the previous chapter.

Hence the ABB vertex rule for the ABB coupling shown in Fig. 3.3a becomes

iV abc
µ,λρ,στ = gfabc

[
(p− q)µgλ[σgτ ]ρ + (p+ q/η)[σ gτ ][λgρ]µ − (q + p/η)[λ gρ][σgτ ]µ

]
.

(3.10)

The term 1
2η
{(DµB

µν)a}2 in the Lagrangian density also has the coupling AABB. So

taking the contribution from the HµνλHµνλ and 1
2η
{(DµB

µν)a}2, we get the vertex

Figure 3.3 ABB and AABB vertices;

rule

iV abcd
µ,ν,λρ,στ = ig2

[
facefbde

(
gµνgλ[σgτ ]ρ + gµ[σgτ ]g[λgρ]ν −

1

η
gµ[λgρ][σgτ ]ν

)
+ fadefbce

(
gµνgλ[σgτ ]ρ + gµ[λgρ]g[σgτ ]ν −

1

η
gµ[σgτ ]g[λgρ]ν

)]
.(3.11)
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This vertex is shown in Fig. 3.3b. We will use the vertex rules in eqn.(3.10) and

eqn.(3.11) in the one-loop calculations. We will calculate the β function of the gauge

coupling constant at one loop order. The dimensional regularization procedure is

used to work out the loop integration in (4−ε) dimensions, where ε is an infinitesimal

number. In (4 − ε) dimension, the gauge coupling constant has mass dimension
ε

2

and can be written as µ
ε
2 g, where µ has the dimension of mass or energy. We define

the bare Lagrangian density at one-loop order as

LB = − Z3
1

4
F µν
a F a

µν + Z1
1

12
Hµνλ
a Ha

µνλ + Zm
m

4
εµνρλF a

µνB
a
ρλ

+ Z ′2∂µω̄a∂
µωa − Z ′1gfbcaAbµ∂µω̄aωc − Z3

1

2ξ
(∂µA

µ
a)2

− Z1
1

2η
{(DµB

µν)a}2 , (3.12)

where the Z’s are the factors which appear due to one-loop corrections of the kinetic

terms of the fields, and of various couplings, and the subscript ‘B’ designates the bare

Lagrangian density. It contains divergent contributions from the loop calculations.

The bare fields, mass, and gauge coupling constants are related to renormalized fields,

mass, and gauge coupling constants as

AB = Z
1
2
3 A (3.13)

BB = Z
1
2
1 B (3.14)

ωB = Z
1
2

2′ω (3.15)

mB =
Zm

Z
1
2
3 Z

1
2
1

m (3.16)

gB = µ
ε
2
Z ′1

Z
1
2
3 Z
′
2

g (3.17)

where the subscript ‘B’ indicates that the fields and coupling constants in the left

hand side of above equations are bare fields and the bare constants respectively. To

find Z3, our next task will be to get the exact propagator of the gauge field taking the
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infinite insertion of the sum of one loop contributions to the gluon propagator. The

sum of one loop contribution is designated as iΠαβ. This sum is diagrammatically

shown in Fig. 3.4 where the solid black blob represents iΠαβ. The complete gluon

propagator including one loop correction can be written as

Figure 3.4 Exact propagator at one loop.

∆̃µν = iDµν + iDµαiΠ
αβiDβν + iDµαiΠ

αβiDβγiΠ
γδiDδν + . . . (3.18)

We will see that Παβ will take the form {π1(p2,m2)(gαβp2−pαpβ)+π2(p2,m2)m2gαβ}.

The result of the infinite sum is

i∆̃µν = −i

[
gµν − kµkν

k2

(1− π1)k2 −m2(1 + π2)
+ ξ

kµkν
k2

(
1

k2 − ξπ2m2

)]
. (3.19)

Including the counterterms, the first term of i∆̃µν is modified as

iD′Bµν = −i

[
gµν − kµkν

k2

k2 − {(Zm − 1) + 1}2m2 − (π1k2 + π2m2) + (Z3 − 1)k2

]
. (3.20)

The coefficient of k2 in the denominator of iD′Bµν becomes (Z3 − π1) k2. On the other

hand, we can find from the bare Lagrangian density in eqn.(3.12) that the transverse

part of bare propagator of the A field as

iD′Bµν = − igµν
k2 −m2

B

. (3.21)

Comparing eqn.(3.20) and eqn.(3.21), we get,

Z3 = 1 + π1. (3.22)

We will find Z ′1 and Z ′2 from the one loop correction of the coupling Aω̄ω and ghost

propagator respectively and find gB according to eqn.(3.17). The generic form of Z
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factor at one-loop order is

Z = 1 +
f(g(µ))

ε
(3.23)

where f(g(µ)) is the function of g(µ). Using this form of Z, we can express gB at

one-loop order in eqn.(3.17) with the subtraction point µ as

ln gB =

(
ε

2
lnµ+

∞∑
n=1

Gn(g(µ))

εn
+ ln g(µ)

)
(3.24)

whereGn(g(µ)) are the functions of g(µ). The summation over n in the right hand side

of the eqn.(3.24) appears due to Taylor expansion of terms like ln(1 + x). Gn(g(µ))’s

are the function of g whereas G(g(µ), ε) designates the sum. Since gB does not depend

on µ, we have

µ
∂ ln gB

∂µ
= 0 =

(
ε

2
+

∂g

∂ lnµ

∞∑
n=1

1

εn
∂Gn(g(µ))

∂g
+

1

g(µ)

∂g

∂ lnµ

)
, (3.25)

which yields

g(µ)
ε

2
+
∂g(µ)

∂ lnµ

(
1 + g(µ)

∞∑
n=1

1

εn
∂Gn(g)

∂g

)
= 0. (3.26)

Since
∂g(µ)

∂ lnµ
is the rate of change of g with respect to lnµ, this quantity is a physical

quantity and it should be finite in the limit ε → 0 [107, 108]. With this demand, we

should write in a renormalizable theory

∂g

∂ lnµ
= − ε

2
g(µ) + β(g). (3.27)

Equating the coefficients of ε to be zero, the first term − ε
2
g(µ) is fixed by matching

the O(ε) term in eqn.(3.26). Using eqn.(3.27), we get from eqn.(3.26)

β(g) +
(
− ε

2
g(µ) + β(g)

)[
g(µ)

(
1

ε

∂G1

∂g
+

1

ε2
∂G2

∂g
+ · · ·

)]
= 0. (3.28)

Now equating the coefficient of ε0 in eqn.(3.28) to be zero, the second term, β(g) is

determined. Hence we get

β(g(µ)) =
g2(µ)

2

∂G1(g(µ))

∂g(µ)
. (3.29)
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The coefficients of
1

εn
must be zero which determines all the other Gn(µ) in terms of

G1(g(µ)). For example cancellation of coefficient of
1

ε
provides

g(µ)

(
∂G1(g(µ))

∂g

)2

=
∂G2(g(µ))

∂g
. (3.30)

where we have used eqn.(3.29). We will use eqn.(3.29) for the calculation of β(g)

function here. G1(g(µ)) is calculated from the one loop calculation which we will see.

For the calculation of one-loop β function, it is sufficient to consider the coefficient of
2

ε
after the loop integration. We consider first the diagrams shown in Fig. 3.2 from

which we will get the contribution for Z3. The loop calculation corresponding to the

diagrams in Fig. 3.2 shows that the pole of the propagator of gauge field modifies the

result and the sum of the divergent part of one loop amplitude. The coefficient of
2

ε

for the diagram in Fig. 3.2a becomes

Π3.2a
ab,µν,ε = −1

2

Nδabg2

16π2

[
−19gµνp

2 + 22pµpν
6

− 9m2gµν

]
, (3.31)

where the
1

2
is taken in order to compensate for identical propagators of gauge bosons

in the loop. Here the subscript ‘ε’ of Πab,µν,ε designates that the right hand side of

the equation is the coefficient of
2

ε
. The coefficient of

2

ε
from the diagrams, shown in

Fig. 3.2b and Fig. 3.2c are respectively

Π3.2b
ab,µν,ε = −1

2

Nδabg2

16π2
6m2gµν , Π3.2c

ab,µν,ε = −Nδ
abg2

16π2

(−gµνp2 − 2pµpν)

12
. (3.32)

Adding the contributions in eqn.(3.31) and eqn.(3.32) we have

Π3.2
ab,µν,ε = Π3.2a

ab,µν,ε + Π3.2b
ab,µν,ε + Π3.2c

ab,µν,ε =
Nδabg2

16π2

[
5

3
(p2gµν − pµpν) +

3

2
m2gµν

]
.(3.33)

Now we consider the contributions from the diagrams constructed on the basis

of various two, three and four point couplings between the A and B fields. Using

the three point couplings AAB and ABB we have constructed the loop diagrams
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Figure 3.5 Loop formed by AAB and ABB couplings;

shown in Fig. 3.5. The three point coupling AAB contains m hence the vertex rule

corresponding to this coupling in eqn.(2.63) contains m. The loop integration for

the diagram shown in Fig. 3.5(a) provides logarithmic divergence1 and we see from

the vertex rule of AAB that the coefficient of this divergence goes as m2 . But the

vertex rule ABB coupling contains momentum as shown in eqn.(3.10). Since the

propagator of the B field behaves as p−2 in the high energy limit, the total dimension

of the divergence term in 4 dimensions is 4 + 2 − 2 − 2 = 2. As a consequence,

by power counting we can see that the divergent part of the loop amplitude for

Fig.3.5b contains two powers of the external momentum2 p and mass m2. We find

the appearance of (p2gµν − pµpν) in the divergent part from the calculation. The

divergent parts corresponding to the two diagrams in Fig. 3.5 is

Π3.5a
ab,µν,ε =

Nδabg2

16π2
3m2gµν , (3.34)

Π3.5b
ab,µν,ε =

Nδabg2

16π2

[
(p2gµν − pµpν) + 3m2gµν

]
. (3.35)

Adding eqn.(3.34) and eqn.(3.35), we get

Π3.5
ab,µν,ε = Π3.5a

ab,µν,ε + Π3.5b
ab,µν,ε =

Nδabg2

16π2

[
(p2gµν − pµpν) + 6m2gµν

]
. (3.36)

The divergent parts of loop integration corresponding to the diagrams in Fig. 3.6
1See the calculation in appendix C
2See the calculation in appendix C
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Figure 3.6 Loop formed by AAA, AB and AAB couplings;

containm2 appearing only from the vertex rules of the two-point AB coupling and the

trilinear AAB coupling. We find from our calculation that the sum of the coefficients

of
2

ε
corresponding to these diagrams is

Π3.6
ab,µν,ε = 2Π3.6a

ab,µν,ε = −Nδ
abg2

16π2

9

4
m2gµν . (3.37)

For similar reasons as given above, we obtain the sum of the coefficients of 2
ε

corresponding to the diagrams in Fig. 3.7 which is

Π3.7
ab,µν,ε =

Nδabg2

16π2

3

2
m2gµν . (3.38)

Figure 3.7 Loops formed by AAB, AB and AAB couplings;

Using the AAA, AB and ABB couplings we get the diagrams shown in Fig. 3.8.
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The sum of the divergent parts corresponding to them is

Π3.8
ab,µν,ε = −Nδ

abg2

16π2

3m2

2
gµν (3.39)

Figure 3.8 Loop formed by AAA, AB, and AAB couplings;

We are now left with only two diagrams which are shown in Fig. 3.9. The four

point coupling AABB is used to form it. The diagram in Fig. 3.9b is finite and does

not contribute to the coefficients of
2

ε
in the loop amplitude. The loop calculation

for Fig. 3.9a is quite similar to that for Fig. 3.2b because the vertex rule of AAAA in

eqn.(2.5) and vertex rule of AABB in eqn.(3.11) do not contain momenta of fields.

So the divergent part corresponding to the Fig. 3.9 contains an m2 due to the pole of

the gauge and tensor field propagators, that is

Π3.9a
ab,µν,ε = Π3.9

ab,µν,ε = − Nδabg2

16π2
9m2gµν . (3.40)

There are no more loop diagrams left to calculate. If we sum up the divergent terms

corresponding to the diagrams shown in Fig. 3.2 and Fig. 3.5- 3.9, then we have

Πab,µν = Π3.2
ab,µν,ε +

3.9∑
n=3.5

Πn
ab,µν,ε =

Nδabg2

16π2

[
8

3
(p2gµν − pµpν)−

45

4
m2gµν

]
. (3.41)

According to the eqn.(3.22), we can say from the eqn.(3.41) that

Z3 = 1 +
8

3

Ng2

16π2

2

ε
. (3.42)
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Figure 3.9 (a) Loop formed by AABB couplings; (b) Loop formed by AAB,

AB, and AAB couplings

We are now going to consider Z ′1 and Z ′2 so that we can find the β function from

eqn.(3.17). These are obtained from one-loop corrections of the ghost propagator and

the trilinear coupling Aω̄ω.

Diagrams corresponding to the one loop corrections to the propagator and the

trilinear coupling are shown in Fig. 3.10.

Figure 3.10 One loop contributions to the ghost’s self energy and three

point couplings among A, ω̄ and ω.
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The loop diagrams contain the coupling Aω̄ω whose vertex rule is given as

iV µ
abc = gfabcp

µ. (3.43)

where pµ is the incoming momentum carried by ω̄. This is shown in the Fig. 3.11.

Due to the massive gauge fields, we have seen how the divergent term in eqn.(3.33)

Figure 3.11 Three point vertex of A, ω and ω̄

contains a part having m2. It becomes necessary to check if the divergent terms fom

the loop calculation corresponding to the diagrams shown in Fig. 3.10 contain m2.

We have found3 that there should not be any term containing m2 in the coefficient

of
2

ε
and the coefficient becomes the same as found in massless Yang-Mills theory in

Feynman ’t-Hooft gauge [106]

Z ′1 = 1− Ng2

16π2ε
, (3.44)

Z ′2 = 1 +
Ng2

16π2ε
. (3.45)

Using Z3, Z ′1 and Z ′2 from eqn.(3.42), eqn.(3.44) and eqn.(3.45) in eqn.(3.17), we get

gB = µ
ε
2

(
1− Ng2

16π2ε

)
(

1 + Ng2

16π2
8
3

2
ε

)(
1 + Ng2

16π2ε

)g(µ). (3.46)

Comparing eqn.(3.46) with eqn.(3.24), we can see

G1 = −Ng
2

16π2

14

3
. (3.47)

3See the argument given in appendix C.
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Therefore we get,

β(g) = −Ng
3

16π2

14

3
. (3.48)

Multiplying both side by g in eqn.(3.48), we get

β(α) = −14

3
N
α2

2π
, (3.49)

where α =
g2

4π
. Here it can be seen clearly that this topologically massive theory is

still asymptotically free though the gauge bosons are now topologically massive. If we

compare the behaviour of the gauge coupling constant as a function of the momentum

scale for massless and this massive gauge theory, we see that the α decreases more

rapidly than in the massless and Proca massive cases. Behaviour of α in both theories

is shown in Fig. 3.12.

0 200 400 600 800 1000
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Figure 3.12 The flow of αs for ordinary (dotted) and topologically massive

(solid) SU(3) gauge theory.
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Appendix C

Loop Calculation

The generic expression of the integration required for calculation of loop-diagram is

Irs (a,D) =

∫
dDk

(2π)D
(k2)r

(k2 − a2)s

= i
(−1)r+s

(4π)D/2
1

(a2)s−r−
D
2

Γ(r + N
2

)Γ(s− r − D
2

)

Γ(D
2

)Γ(s)
. (C.1)

It follows from eqn.(C.1) that

Irr+2(a,D) = i
1

(4π)D/2
1

(a2)2−D
2

Γ

(
2− D

2

) (
r + D

2
− 1
) (
r + D

2
− 2
)
. . . D

2

(r + 1)!

=

(
r + D

2
− 1
) (
r + D

2
− 2
)
. . . D

2

(r + 1)!
I0

2 (a,D), (C.2)

where

I0
2 (a,D) =

i

(4π)(2− ε
2)

(a2)−
ε
2 Γ
( ε

2

)
. (C.3)

We put D = 4 − ε in eqn.(C.3). Putting D = 4 in the coefficient of I0
2 in eqn.(C.2)

and using eqn.(C.3) we get

Irr+2 = I0
2 . (C.4)

For the infinitesimal value of the ε, it is given
98



C.1 One loop amplitude of Fig. 3.5a and Fig. 3.5b. 99

Γ(−n+ ε) = (−1)n
[

1

ε
− γ(n) +O(ε)

]
, (C.5)

where γ(n) is known as Euler-Mascheroni constant and the last term in the expansion

of the Γ contains non-zero positive power of ε. So in the limit ε → 0, the last term

becomes insignificant. We know

lim
ε→0

xε = 1 + ε lnx+ . . . (C.6)

Using eqn.(C.3) and eqn.(C.6), we get the leading term in the limit ε→ 0,

µ
ε
2 I0

2 = i
1

(4π)2

[
2

ε
− γ + ln 4π + f(a2, µ)

]
, (C.7)

where f(a2, µ) is a function of a2 and µ. Now we define ζε as

ζε =
2

ε
− γ + ln 4π. (C.8)

So, we can conclude from that eqn.(C.1), that I1
3 , I2

4 provide the same coefficient

of
2

ε
when we put D = 4 in all factors other than ζε. This result is very useful

for calculations. In order to find the beta function of coupling constant it will be

sufficient to find the coefficient of
2

ε
from loop calculation.

C.1 One loop amplitude of Fig. 3.5a and Fig. 3.5b.

We will show here how the m2 term appears as the coefficient of 1
ε
in loop calculation

from the diagram shown in Fig. 3.5b and in Fig. C.1. We have taken the propagator

of Bµν
a field as

iDµν,ρλ(k) = i

[
gµ[ρgλ]ν + (1− η)

k[µk[λgρ]ν]
k2

k2 −m2
− ηm2 k[µk[λgρ]ν]

k4(k2 −m2)

]
. (C.9)
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Figure C.1 One loop diagrams using ABB vertex

For the simplicity in calculation , we have chosen η = 1. The propagator becomes

iDµν,ρλ(k) = i

[
gµ[ρgλ]ν

k2 −m2
−m2 k[µk[λgρ]ν]

k4(k2 −m2)

]
. (C.10)

So the one-loop calculation for the diagram in Fig. C.1 in D = 4− ε space-time is

Πab
µν =

∫
dDk

(2π)D
πabµν , (C.11)

where

πabµν = 1
16

gfnma
[
(2k − p)µgρ[αgβ]σ + p[ρgσ][αgβ]µ − p[αgβ][ρgσ]µ

]
iDρσ,ρ′σ′

(p− k)×

gfbnm
[
(p− 2k)νgρ′[α′gβ′]σ′ − p[ρ′gσ][α′gβ′]ν + p[α′gβ′][ρ′gσ′]ν

]
iDαβ,α′β′

(k).

(C.12)

The factor 1
16

= 1
4
× 1

4
comes due to the contraction of two antisymmetric pairs of

indices present in two propagators of Bµν field. Now we will see how the different

parts of the propagator of B contribute in the coefficient 2
ε
from counting the power

of loop momentum k. It helps us to find the relevant parts of the propagator in our

calculation. Writing the propagator of Bµν as

iDµν,ρλ(k) = idµν,ρλ1 (k) + idµν,ρλ2 (k), (C.13)

where

idµν,ρλ1 (k) = i
gµ[ρgλ]ν

k2 −m2
, (C.14)

idµν,ρλ2 (k) = −m2 k[µk[λgρ]ν]

k4(k2 −m2)
, (C.15)
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we can express

πabµν =
1

16
gfnma

[
(2k − p)µgρ[αgβ]σ + p[ρgσ][αgβ]µ − p[αgβ][ρgσ]µ

]
i
(
dρσ,ρ

′σ′

1 (p− k) + dρσ,ρ
′σ′

2 (p− k)
)
×

gfbnm
[
(p− 2k)νgρ′[α′gβ′]σ′ − p[ρ′gσ][α′gβ′]ν + p[α′gβ′][ρ′gσ′]ν

]
i
(
dαβ,α

′β′

1 (k) + dαβ,α
′β′

2 (k)
)
. (C.16)

Our aim is to calculate the divergent part of the integration in eqn.(C.11). So we

now see what are the relevant contributions to the divergent part of the integration

in eqn.(C.16). We can see from eqn.(C.14) and eqn.(C.15) that idµν,ρλ1 (k) behaves

as 1
k2

and idµν,ρλ2 (k) behaves as 1
k4

at high energy. So we can easily see the parts of

the integrand providing the divergent part of the integration are those which contain

d1(k)d1(p− k) , d1(k)d2(p− k) and d1(p− k)d2(k). We can understand now that d1d1

and d1(k)d2(p − k) or d2(k)d1(p − k) behave like 1
k4

and 1
k6

respectively. The kµkν

term in the loop integration contributes as k2ηµν because of∫
dDk

(2π)D
kµkν

[k2 − a2]2
=

1

4

∫
dDk

(2π)D
ηµνk2

[k2 − a2]2
= ηµν

1

4
I1

2 . (C.17)

So in order to calculate the divergence the divergent part from the part of the in-

tegrand where d1(k)d1(p − k) is present, we have to consider the terms of the nu-

merator containing k2−n where n = 0, 1, 2 for four dimensional space-time. Whereas

it is sufficient to take the terms from the numerator containing k2 when the parts

with d1(k)d2(p − k) or d2(k)d1(p − k) are considered. We do not consider the part

of the integrand containing d2(k)d2(p − k), it behaves as 1
k8

at high energy, but the

maximum power of k from the numerator is 2+4=6; as a consequence there should

not be any divergent part in this case. We have used xAct Mathematica-package to

know the result of tensor algebra in eqn.(C.16). We get the numerator in the part of
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the integrand where d1(k)d1(p− k) is present

Nµν
1ab = 2Nδab

[
2gµνp

2 + 6kµ(2k − p)ν + pµ(p− 6k)ν
]

= 2Nδab
[
(2gµνp

2 + pµpν) + 12kµkν − 6(kµpν + kνpµ)
]
, (C.18)

where we have used fabcfdbc = Nδdb for SU(N) group. We have to calculate the

integration

Πµν
1 δab =

∫
dDk

(2π)D
Nµν

1ab

[(p− k)2 −m2] (k2 −m2)
. (C.19)

Introducing Feynman parameter ζ, we get

Πµν
1 δab =

∫ 1

0

dζ
dDk

(2π)D

∫ 1

0

dζ
Nµν

1ab

[(1− ζ)(k2 −m2) + ζ {(p− k)2 −m2}]2

=

∫
dDk

(2π)D

∫ 1

0

dζ
Nµν

1ab[
(k − ζp)2 − a2

]2 , (C.20)

where

a2 = m2 − ζ(1− ζ)p2. (C.21)

We find from eqn.(C.18) and eqn.(C.19) that we need to find the divergent part of

the integration of type

Iµν =

∫
dDk

(2π)D

∫ 1

0

dζ
kµkν

[(k − ζp)2 − a2]2
. (C.22)

Shifting the variable k → k − ζp, we rewrite the above integration as

Iµν =

∫
dDk

(2π)D

∫ 1

0

dζ
kµkν + ζ (kµpν + kνpµ) + ζ2pµpν

[k2 − a2]2
. (C.23)

The coefficient of ζ in the integrand of eqn.(C.23) containing kµ contributes zero after

integration because it is odd in k. Hence we are left with

Iµν =

∫
dDk

(2π)D

∫ 1

0

dζ
kµkν + ζ2pµpν

[k2 − a2]2
. (C.24)



C.1 One loop amplitude of Fig. 3.5a and Fig. 3.5b. 103

Using eqn.(C.17) and integrating eqn.(C.24) over ζ , we get∫
dDk

(2π)D

∫ 1

0

dζ
kµkν + ζ2pµpν

[k2 − a2]2
=

1

4
gµνI1

2 +

∫ 1

0

dζζ2pµpνI0
2 . (C.25)

Now using eqn.(C.1), we get

I1
2 = − 1

(4π)2
(a2)(1− ε

2)D

2
Γ
(
−1 +

ε

2

)
. (C.26)

After integration over ζ, we find the coefficient of
2

ε
from the integration eqn.(C.25),

as

Cµν
1 =

1

4
gµν
(

2m2 − p2

3

)
+

1

3
pµpν . (C.27)

We can also find from eqn.(C.18) and eqn.(C.19) that we need to get the divergent

part of the integration

Iµν2 = −6

∫
dDk

(2π)D
pµkν + pνkµ

[(p− k)2 −m2] (k2 −m2)
. (C.28)

We find the coefficient of
2

ε
from the integration in eqn.(C.28) as

Cµν
2 = −6pµpν . (C.29)

Finding the contributions to the coefficient of
2

ε
from the eqn.(C.27), eqn.(C.28) and

eqn.(C.29), we get the coefficient of
2

ε
for the integration in eqn.(C.20) as

Πµν
1,ε = 2N [(2p2gµν + pµpν) + 12Cµν

1 + Cµν
2 ], (C.30)

= 2N [p2gµν − pµpν + 6m2gµν ]. (C.31)

We can easily observe from the expression of the integrand in eqn.(C.16) that the

divergent contribution containing d1(k)d2(p− k) has the numerator

Nµν
2ab = −2g2Nδabkµkνk[αk

[αg
β]
β]

= −12g2Nδabkµkνk
2. (C.32)



C.1 One loop amplitude of Fig. 3.5a and Fig. 3.5b. 104

We have now the integration

Πµν
2 δab =

∫
dDk

(2π)D
Nµν

2ab

k4 [(p− k)2 −m2] (k2 −m2)
, (C.33)

which provides the coefficient of
2

ε

Πµν
2,ε = −3Ngµν . (C.34)

Same contribution as in eqn.(C.34) is obtained when we consider the part of the

integrand containing d2(k)d1(p− k):

Πµν
3,ε = −3Ngµν . (C.35)

So adding up the contributions, we obtain the coefficient of
2

ε
as

Πab
µν,ε = [2(p2gµν − pµpν) + 6m2gµν ]δab. (C.36)

which is shown in eqn.(3.35) with a factor
1

2
is taken for the two internal B propa-

gators. Now we consider the diagram shown in Fig. C.2. Unlike the vertex rule for

Figure C.2 One loop diagrams using AAB vertex

ABB coupling, AAB vertex rule does not have any momentum but it contains m.

So we can easily understand that the required coefficient of
2

ε
comes from the part

containing d1(k)d1(p− k). Thus we can write

πabµν =
1

4
igmfamnεµσρλ id

ρλ,ρ′λ′

1 (k)
−igσσ′

(p− k)2 −m2
igmfmbnεσ′νρ′λ′ , (C.37)

=
3Ng2m2

(k2 −m2) [(p− k)2 −m2]
δab. (C.38)
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So the loop integration becomes I0
2 . Hence here the m2 term in the coefficient of

2

ε
appears only due to the vertex rule of AAB coupling. This result is shown in

eqn.(3.34).

C.2 One loop corrections in the ghost sector

We are going to see how the divergent part of the loop integration for the one loop

correction of ghost propagator and trilinear coupling Aω̄ω is independent of m2 term.

First I consider the diagram Fig. C.3a. The loop amplitude in the Feynman ’t-Hooft

Figure C.3 Diagram for one loop correction of (a) ghost propagator and (b)

trilinear coupling Aω̄ω.

gauge is

πab = −ig2Nδab

∫
d4k

(2π)4
pα

[
gαβ

k2 −m2
− m2kαkβ

k4(k2 −m2)

]
(p+ k)β

1

(p+ k)2
. (C.39)

It is clearly seen from power counting that the part of the integrand containing kαkβ

does not provide any divergence. Only the term in the propagator containing gαβ in

the integrand is divergent i.e. the divergence is in

π1
µν,ab = ig2Nδab

∫
d4k

(2π)4
pα

[
gαβ

k2 −m2

]
(p+ k)β

1

(p+ k)2
. (C.40)
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So the maximum power of k in the numerator is 5. The term containing an odd power

of k after introducing Feynman parameters and after the shifting variable provides

zero. The next of power of k in the numerator is 4 which is also the power of k in

denominator of the integrand. The integral thus I0
2 .

Next we consider the diagram in Fig. C.3b. The loop integration corresponding

to it in the Feynman-t’Hooft gauge is

−
∫

d4k

(2π)4
ig3faemfcnmfebnpα

[
gαα

′

(k − q)2 −m2
− m2(k − q)α(k − q)α′

{(k − q)2 −m2}(k − q)4

]
× [(q + k)α′gµλ − (2k − q)µgα′λ − (2q − k)λgα′µ]

1

(k + p− q)2
(k + p− q)λ′

×
[

gλλ
′

k2 −m2
− m2kλkλ

′

k4(k2 −m2)

]
. (C.41)

By counting the power of loop momentum k, we see that the divergent part comes

from the integration

iIµC.3babc = −
∫

d4k

(2π)4
ig3faemfcnmfebnpα

gαα
′

(k − q)2 −m2
[kα′gµλ − 2kµgα′λ + kλgα′µ]

× 1

(k + p− q)2
kλ′

gλλ
′

k2 −m2
(C.42)

=

∫
d4k

(2π)4
ig3faemfcnmfebn

pα(k2gαµ − kαkµ)

[(k − q)2 −m2](k2 −m2)(k + p− q)2
.

(C.43)

Introducing the Feynman parameters ζ1, ζ2 and ζ3, we get the the divergent part of

loop integration in D = 4− ε dimension as

iΓµabcC.3b = ig3faemfcnmfebn

∫ 1

0

dζ1

∫ 1

0

dζ2

∫ 1

0

dζ3

∫
dDk′

(2π)D
δ

(
1−

3∑
n=1

ζn

)
pα(k

′2gαµ − k′αk
′µ)

[k′2 − a2]3

= ig3faemfcnmfebn
3

4

∫ 1

0

dζ1

∫ 1

0

dζ2

∫ 1

0

dζ∫ dDk′

(2π)D
δ

(
1−

3∑
n=1

ζn

)
pαk

′2gαµ

[k′2 − a2]3
, (C.44)

where k′ = k − ζ2q − ζ3(q − p) and a2 = ζ1m
2 + {ζ2q − ζ3(q − p)}2. Here we have

used eqn.(C.17). The integration over k′ is I1
3 according to eqn.(C.1). It is clearly
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seen that the coefficient of
2

ε
does not m2. Next we consider the diagram shown in

Fig. 3.10 and Fig. C.4. The loop integration corresponding to Fig. C.4 is

Figure C.4 Diagram for one loop correction of trilinear coupling Aω̄ω.

IµC.4abc = − ifamnfcnefmeb

∫
d4k

(2π)4
pα(p+ k)µ(k + p− q)α′

[
gαα

′

k2 −m2
− m2kαkα

′

k4(k2 −m2)

]
× 1

(p+ k)2(k + p− q)2
. (C.45)

Introducing the Feynman parameters ζ1, ζ2, and ζ3, we get the divergent part of loop

integration in D = 4− ε dimension as

iΓµC.4abc = − ifamnfcnefmeb

∫ 1

0

dζ1

∫ 1

0

dζ2

∫ 1

0

dζ3

∫
dDk′

(2π)D
δ

(
1−

3∑
n=1

ζn

)
pαk

′µk
′α

[k′2 − a2]
,

= − 1

4
ifamnfcnefmeb

∫ 1

0

dζ1

∫ 1

0

dζ2

∫ 1

0

dζ3

∫
dDk′

(2π)D
δ

(
1−

3∑
n=1

ζn

)
pµk

′2

[k′2 − a2]
,

(C.46)

where k′ = k+ζ2p+ζ3(p−q) and a2 = ζ1m
2 +[ζ2p+ ζ3(p− q)]2. The integration over

loop momentum k in eqn.(C.46) is also I1
3 which does not provide m2 in the divergent

part. As a consequence, Z ′1 and Z ′2 are same as found in the massless Yang-Mills

theory [106] which we have used in eqn.(3.44) and eqn.(3.45).



Chapter 4

Conclusions

In this thesis, we have worked on topologically massive models where the Yang-Mills

gauge field acquires mass without breaking the global symmetry. We have considered

elastic scattering of massive non-Abelian gauge bosons in 3+1 dimensions. Because

of the mass gap, cluster decomposition property of S-matrix holds in this model. We

have seen in the first chapter how mass-gap also plays the role in the interpretation

of confinement of gluons in QCD. The topologically massive model provides the CP

conservation which is necessary in QCD.

We wanted to see if in this model provides the unitarity of 2→ 2 elastic scatterings

among massive bosons at tree level remains unitarity. With the purpose, we consid-

ered SU(2) gauge theory for simplicity. It is a well known fact that if we take Proca

massive gauge bosons in a pure Yang-Mills model, then unitarity is violated. This

cannot cause any problem in the electroweak sector of the Standard model where we

consider WW → WW scattering process. Because the non-linear interactions among

gauge and Higgs fields cause the total amplitude behaving as required for unitarity

i.e. unitarity is not violated. In the non-Abelian topologically massive model, we have

considered various couplings among gauge and Kalb-Ramond fields. We have found

108
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that total amplitude of the scattering process M behaves as O(E0) in the leading

order, which ensures unitarity. Since the model is renormalizable, the unitarity of the

models is guaranteed at every order of quantum correction.

Next we have seen a beautiful characteristic of topologically massive Yang-Mills

theory. We know that the asymptotic freedom exists in the pure Yang-Mills theory,

which says that the gauge coupling constant decreases with the increase of energy

scale. We see this behaviour by calculating the β function. But if we include the

interactions among matter and gauge fields, then the rate of decrease becomes slower.

Since we considered various interactions among the YM and KR fields, it became

interesting to see the behaviour of gauge coupling in the topologically massive model

for SU(N) gauge theory. We have observed an interesting behaviour which is different

from the pre-existing notion of the contribution of matter field in beta function. The

beta function in this model becomes more negative than usual massless Yang-Mills

theory.
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